Advertisement

Simulation of Balloon-Expandable Coronary Stent Apposition with Plastic Beam Elements

  • Camille KrewcunEmail author
  • Émilie Péry
  • Nicolas Combaret
  • Pascal Motreff
  • Laurent Sarry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11768)

Abstract

The treatment of the coronary artery disease by balloon-expandable stent apposition is a fully endovascular procedure. As a consequence, limited imaging data is available to cardiologists, who could benefit from additional per-operative information. This study aims at providing a relevant prediction tool for stent apposition, in the form of a mechanically precise simulation, fast enough to be compatible with clinical routine. Our method consists in a finite element discretisation of the stent using 1D connected beam elements, with nonlinear plastic behaviour. The artery wall is modelled as a surface mesh interacting with the stent. As a proof of concept, the simulation is compared to micro-CT scans, which were acquired during the apposition of a stent in a silicone coronary phantom. Our results show that the simulation is able to accurately reproduce the stent final geometry, in a computational time greatly lower than for classic 3D finite element codes. Although this first validation step is preliminary, our work is to be extended towards more realistic scenarios, notably with the introduction of a personalised artery model and the corresponding in vivo validation.

Keywords

Simulation Stent deployment Finite Element Method Beam element Plasticity 

Notes

Acknowledgements

The authors would like to thank Arnaud Briat from the multi-modal imaging facility IVIA (In Vivo Imaging Auvergne), Clermont-Ferrand, France, for their assistance in the acquisition of the micro-CT images. We also thank François Wastable for helping with the phantom manufacturing.

References

  1. 1.
    Adagolodjo, Y., Goffin, L., Mathelin, M.D., Courtecuisse, H.: Inverse real-time finite element simulation for robotic control of flexible needle insertion in deformable tissues. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)Google Scholar
  2. 2.
    Bazoune, A., Khulief, Y.A., Stephen, N.G.: Shape functions of three dimensional timoshenko beam element. J. Sound Vib. 259, 473–480 (2003)CrossRefGoogle Scholar
  3. 3.
    Beule, M.D., Mortier, P., Carlier, S.G., Verhegghe, B., Impe, R.V., Verdonck, P.: Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41, 383–389 (2008)CrossRefGoogle Scholar
  4. 4.
    Dequidt, J., Marchal, M., Duriez, C., Kerien, E., Cotin, S.: Interactive simulation of embolization coils: modeling and experimental validation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 695–702. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85988-8_83CrossRefGoogle Scholar
  5. 5.
    Faure, F., et al.: SOFA: a multi-model framework for interactive physical simulation, pp. 283–321. Springer, Berlin (2012).  https://doi.org/10.1007/8415_2012_125Google Scholar
  6. 6.
    Hughes, T.J.R.: Theoretical Foundation for Large-Scale Computations of Nonlinear Material Behavior, Chap. II. Springer, Berlin (1984).  https://doi.org/10.1007/978-94-009-6213-2CrossRefGoogle Scholar
  7. 7.
    Idziak-Jablońska, A., Karczewska, K., Kuberska, O.: Modeling of mechanical phenomena in the platinum-chromium coronary stents. J. Appl. Math. Comput. Mech. 16, 29–36 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Migliavacca, F., Petrini, L., Colombo, M., Auricchio, F., Pietrabissa, R.: Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35, 803–811 (2002)CrossRefGoogle Scholar
  9. 9.
    Przemieniecki, J.S.: Theory of Matrix Structural Analysis, 1st edn. McGraw-Hill, New York (1968) zbMATHGoogle Scholar
  10. 10.
    Tournier, M., Nesme, M., Gilles, B., Faure, F.: Stable constrained dynamics. ACM Trans. Graph. 34, 132:1–132:10 (2015)CrossRefGoogle Scholar
  11. 11.
    Čanić, S., Tambača, J.: Cardiovascular stents as PDE nets: 1D vs. 3D. IMA J. Appl. Math. 77, 748–770 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zahedmanesh, H., Kelly, D.J., Lally, C.: Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy. J. Biomech. 43, 2126–2132 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camille Krewcun
    • 1
    Email author
  • Émilie Péry
    • 1
  • Nicolas Combaret
    • 2
  • Pascal Motreff
    • 2
  • Laurent Sarry
    • 1
  1. 1.Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut PascalClermont-FerrandFrance
  2. 2.Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut PascalClermont-FerrandFrance

Personalised recommendations