Learning to Detect Collisions for Continuum Manipulators Without a Prior Model

  • Shahriar SefatiEmail author
  • Shahin Sefati
  • Iulian Iordachita
  • Russell H. Taylor
  • Mehran Armand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11768)


Due to their flexibility, dexterity, and compact size, Continuum Manipulators (CMs) can enhance minimally invasive interventions. In these procedures, the CM may be operated in proximity of sensitive organs; therefore, requiring accurate and appropriate feedback when colliding with their surroundings. Conventional CM collision detection algorithms rely on a combination of exact CM constrained kinematics model, geometrical assumptions such as constant curvature behavior, a priori knowledge of the environmental constraint geometry, and/or additional sensors to scan the environment or sense contacts. In this paper, we propose a data-driven machine learning approach using only the available sensory information, without requiring any prior geometrical assumptions, model of the CM or the surrounding environment. The proposed algorithm is implemented and evaluated on a non-constant curvature CM, equipped with Fiber Bragg Grating (FBG) optical sensors for shape sensing purposes. Results demonstrate successful detection of collisions in constrained environments with soft and hard obstacles with unknown stiffness and location.


Collision detection Continuum Manipulator Minimal invasive surgery Machine learning 


  1. 1.
    Bajo, A., Simaan, N.: Finding lost wrenches: using continuum robots for contact detection and estimation of contact location. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3666–3673. IEEE (2010)Google Scholar
  2. 2.
    Bajo, A., Simaan, N.: Kinematics-based detection and localization of contacts along multisegment continuum robots. IEEE Trans. Robot. 28(2), 291–302 (2012)CrossRefGoogle Scholar
  3. 3.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)CrossRefGoogle Scholar
  4. 4.
    Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J. Electron. Imaging 8(3), 279–290 (1999)CrossRefGoogle Scholar
  5. 5.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recogn. 42(9), 1977–1987 (2009)CrossRefGoogle Scholar
  7. 7.
    Jäckle, S., Strehlow, J., Heldmann, S.: Shape sensing with fiber Bragg grating sensors. Bildverarbeitung für die Medizin 2019. I, pp. 258–263. Springer, Wiesbaden (2019). Scholar
  8. 8.
    Khan, F., Denasi, A., Barrera, D., Madrigal, J., Sales, S., Misra, S.: Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sens. J. (2019) Google Scholar
  9. 9.
    Lai, W., Cao, L., Xu, Z., Phan, P.T., Shum, P., Phee, S.J.: Distal end force sensing with optical fiber Bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–5. IEEE (2018)Google Scholar
  10. 10.
    Li, J., Xiao, J.: Exact and efficient collision detection for a multi-section continuum manipulator. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4340–4346. IEEE (2012)Google Scholar
  11. 11.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Rahman, N., Deaton, N.J., Sheng, J., Cheng, S.S., Desai, J.P.: Modular FBG bending sensor for continuum neurosurgical robot. IEEE Robot. Autom. Lett. 4(2), 1424–1430 (2019)CrossRefGoogle Scholar
  13. 13.
    Sefati, S., Alambeigi, F., Iordachita, I., Armand, M., Murphy, R.J.: FBG-based large deflection shape sensing of a continuum manipulator: manufacturing optimization. In: 2016 IEEE SENSORS, pp. 1–3. IEEE (2016)Google Scholar
  14. 14.
    Sefati, S., Alambeigi, F., Iordachita, I., Taylor, R.H., Armand, M.: On the effect of vibration on shape sensing of continuum manipulators using fiber Bragg gratings. In: 2018 International Symposium on Medical Robotics (ISMR), pp. 1–6. IEEE (2018)Google Scholar
  15. 15.
    Sefati, S., Hegeman, R., Alambeigi, F., Iordachita, I., Armand, M.: FBG-based position estimation of highly deformable continuum manipulators: Model-dependent vs. data-driven approaches. In: 2019 International Symposium on Medical Robotics (ISMR), pp. 1–6. IEEE (2019)Google Scholar
  16. 16.
    Sefati, S., et al.: FBG-based control of a continuum manipulator interacting with obstacles. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6477–6483. IEEE (2018)Google Scholar
  17. 17.
    Sefati, S., Pozin, M., Alambeigi, F., Iordachita, I., Taylor, R.H., Armand, M.: A highly sensitive fiber Bragg grating shape sensor for continuum manipulators with large deflections. In: 2017 IEEE SENSORS, pp. 1–3. IEEE (2017)Google Scholar
  18. 18.
    Shi, C., et al.: Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017)CrossRefGoogle Scholar
  19. 19.
    Xu, R., Yurkewich, A., Patel, R.V.: Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shahriar Sefati
    • 1
    Email author
  • Shahin Sefati
    • 2
  • Iulian Iordachita
    • 1
  • Russell H. Taylor
    • 1
  • Mehran Armand
    • 1
    • 3
  1. 1.Laboratory for Computational Sensing and RoboticsJohns Hopkins UniversityBaltimoreUSA
  2. 2.Comcast Applied AI ResearchComcastWashington D.C.USA
  3. 3.Johns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations