Advertisement

Deep Esophageal Clinical Target Volume Delineation Using Encoded 3D Spatial Context of Tumors, Lymph Nodes, and Organs At Risk

  • Dakai JinEmail author
  • Dazhou Guo
  • Tsung-Ying HoEmail author
  • Adam P. Harrison
  • Jing Xiao
  • Chen-kan Tseng
  • Le Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11769)

Abstract

Clinical target volume (CTV) delineation from radiotherapy computed tomography (RTCT) images is used to define the treatment areas containing the gross tumor volume (GTV) and/or sub-clinical malignant disease for radiotherapy (RT). High intra- and inter-user variability makes this a particularly difficult task for esophageal cancer. This motivates automated solutions, which is the aim of our work. Because CTV delineation is highly context-dependent—it must encompass the GTV and regional lymph nodes (LNs) while also avoiding excessive exposure to the organs at risk (OARs)—we formulate it as a deep contextual appearance-based problem using encoded spatial contexts of these anatomical structures. This allows the deep network to better learn from and emulate the margin- and appearance-based delineation performed by human physicians. Additionally, we develop domain-specific data augmentation to inject robustness to our system. Finally, we show that a simple 3D progressive holistically nested network (PHNN), which avoids computationally heavy decoding paths while still aggregating features at different levels of context, can outperform more complicated networks. Cross-validated experiments on a dataset of 135 esophageal cancer patients demonstrate that our encoded spatial context approach can produce concrete performance improvements, with an average Dice score of \(83.9\pm 5.4\%\) and an average surface distance of \(4.2\pm 2.7\,\mathrm {mm}\), representing improvements of \(3.8\%\) and \(2.4\,\mathrm {mm}\), respectively, over the state-of-the-art approach.

References

  1. 1.
    Bray, F., Ferlay, J., et al.: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer J. Clin. 68(6), 394–424 (2018)CrossRefGoogle Scholar
  2. 2.
    Burnet, N.G., Thomas, S.J., Burton, K.E., Jefferies, S.J.: Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2), 153 (2004)CrossRefGoogle Scholar
  3. 3.
    Cardenas, C.E., Anderson, B.M., et al.: Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks. Phys. Med. Biol. 63(21), 215026 (2018)CrossRefGoogle Scholar
  4. 4.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  5. 5.
    Eminowicz, G., McCormack, M.: Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer. Radiother. Oncol. 117(3), 542–547 (2015)CrossRefGoogle Scholar
  6. 6.
    Harrison, A.P., Xu, Z., George, K., Lu, L., Summers, R.M., Mollura, D.J.: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from CT images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 621–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_71CrossRefGoogle Scholar
  7. 7.
    Heinrich, M.P., Oktay, O., Bouteldja, N.: OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)CrossRefGoogle Scholar
  8. 8.
    Jin, D., Guo, D., Ho, T.Y., et al.: Accurate esophageal gross tumor volume segmentation in pet/ct using two-stream chained 3d deep network fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 182–191. Springer. Cham (2019)Google Scholar
  9. 9.
    Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J.: 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 141–149. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67389-9_17CrossRefGoogle Scholar
  10. 10.
    Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00934-2_81CrossRefGoogle Scholar
  11. 11.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
  12. 12.
    Louie, A.V., Rodrigues, G., et al.: Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother. Oncol. 95(2), 166–171 (2010)CrossRefGoogle Scholar
  13. 13.
    Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)CrossRefGoogle Scholar
  14. 14.
    Men, K., Dai, J., Li, Y.: Automatic segmentation of the clinical target volume and organs at risk in the planning ct for rectal cancer using deep dilated convolutional neural networks. Med. Phys. 44(12), 6377–6389 (2017)CrossRefGoogle Scholar
  15. 15.
    Men, K., Zhang, T., et al.: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Physica Med. 50, 13–19 (2018)CrossRefGoogle Scholar
  16. 16.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yousefi, S., et al.: Esophageal gross tumor volume segmentation using a 3D convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 343–351. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_40CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.: Epidemiology of esophageal cancer. World J. Gastroenterol. WJG 19(34), 5598 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.PAII Inc.BethesdaUSA
  2. 2.Chang Gung Memorial HospitalLinkouTaiwan, ROC
  3. 3.Ping An TechnologyShenzhenChina

Personalised recommendations