Advertisement

Bronchus Segmentation and Classification by Neural Networks and Linear Programming

  • Tianyi Zhao
  • Zhaozheng YinEmail author
  • Jiao Wang
  • Dashan Gao
  • Yunqiang Chen
  • Yunxiang Mao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11769)

Abstract

Airway segmentation is a critical problem for lung disease analysis. However, building a complete airway tree is still a challenging problem because of the complex tree structure, and tracing the deep bronchi is not trivial in CT images because there are numerous small airways with various directions. In this paper, we develop two-stage 2D+3D neural networks and a linear programming based tracking algorithm for airway segmentation. Furthermore, we propose a bronchus classification algorithm based on the segmentation results. Our algorithm is evaluated on a dataset collected from 4 resources. We achieved the dice coefficient of 0.94 and F1 score of 0.86 by a centerline based evaluation metric, compared to the ground-truth manually labeled by our radiologists.

Keywords

Airway segmentation 2D+3D neural network Linear programming Tracking Bronchus classification 

Notes

Acknowledgements

Tianyi Zhao and Zhaozheng Yin were partially supported by National Science Foundation (NSF) CAREER award IIS-1351049.

References

  1. 1.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  2. 2.
    Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J.: 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 141–149. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67389-9_17CrossRefGoogle Scholar
  3. 3.
    Zhao, T., Yin, Z.: Pyramid-based fully convolutional networks for cell segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 677–685. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_77CrossRefGoogle Scholar
  4. 4.
    Juarez, A.G.-U., Tiddens, H.A.W.M., de Bruijne, M.: Automatic airway segmentation in chest CT using convolutional neural networks. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 238–250. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00946-5_24CrossRefGoogle Scholar
  5. 5.
    Yun, J., et al.: Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Med. Image Anal. (MedIA) 51, 13–20 (2019)CrossRefGoogle Scholar
  6. 6.
    Bian, Z., et al.: Small airway segmentation in thoracic computed tomography scans: a machine learning approach. Phys. Med. Biol. 63, 155024 (2018)CrossRefGoogle Scholar
  7. 7.
    Meng, Q., Roth, H.R., Kitasaka, T., Oda, M., Ueno, J., Mori, K.: Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 198–207. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_23CrossRefGoogle Scholar
  8. 8.
    Charbonnier, J.-P., et al.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. (MedIA) 36, 52–60 (2017)CrossRefGoogle Scholar
  9. 9.
    Xu, Z., et al.: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med. Image Anal. (MedIA) 24, 1–17 (2015)CrossRefGoogle Scholar
  10. 10.
    Mori, K., et al.: Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system. IEEE-TMI 19(2), 103–114 (2000)Google Scholar
  11. 11.
    Bidaut, L., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)CrossRefGoogle Scholar
  12. 12.
    Bartholmai, B., et al.: The Lung Tissue Research Consortium: an extensive open database containing histological, clinical, and radiological data to study chronic lung disease. In: MICCAI Open Science Workshop (2006)Google Scholar
  13. 13.
    Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tianyi Zhao
    • 1
    • 2
  • Zhaozheng Yin
    • 1
    Email author
  • Jiao Wang
    • 2
  • Dashan Gao
    • 2
  • Yunqiang Chen
    • 2
  • Yunxiang Mao
    • 2
  1. 1.Missouri University of Science and TechnologyRollaUSA
  2. 2.12 Sigma TechnologiesSan DiegoUSA

Personalised recommendations