Macroeconomic Analysis and Parametric Control Based on Global Multi-country Dynamic Computable General Equilibrium Model (Model 1)

  • Abdykappar A. Ashimov
  • Yuriy V. Borovskiy
  • Dmitry A. Novikov
  • Bakyt T. Sultanov
  • Mukhit A. Onalbekov


This chapter illustrates the efficiency of parametric control based on the dynamic computable general equilibrium (CGE) model that was developed from the static model Globe 1 [43].


Computable general equilibrium model; Conceptual description of the global economy; Social accounting matrix; Scenario analysis; Economic growth 


  1. 1.
    Arnold VI (1988) Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Arnold VI, Gusein-Zade SM, Varchenko AN (1985) Singularities of differential maps. Volume I. Birkhauser, Boston, Basel, StuttgartGoogle Scholar
  3. 3.
    Ashimov AA, Sultanov BT, Adilov ZM, Borovskiy YV, Novikov DA, Alshanov RA, Ashimov AA (2013) Macroeconomic analysis and parametrical control of a national economy. Springer, New YorkGoogle Scholar
  4. 4.
    Bobylev NA, Emel’yanov SV, Korovin SK (1998) Geometricheskie metody v variatsionnykh zadachakh (geometrical methods in variational problems). Magistr, Moscow. (in Russian)Google Scholar
  5. 5.
    Vasil’ev FP (1998) Chislennye metody resheniya ekstremal’nykh zadach (numerical solution methods for extremum problems). Nauka, Moscow. (in Russian)Google Scholar
  6. 6.
    Golubitsky M, Guillemin V (1973) Stable mappings and their singularities. Springer-Verlag, New YorkGoogle Scholar
  7. 7.
    Dubovskii SV (1995) Kondratiev’s cycle as the object of modeling. Matematicheskoe Modelirovanie 7(6):65–74. (in Russian)Google Scholar
  8. 8.
    Zangwill WI (1969) Nonlinear programming: a unified approach. Prentice-Hall, Englewood CliffsGoogle Scholar
  9. 9.
    Ioffe AD, Tihomirov VM (1979) Theory of extremal problems (studies in mathematics and its applications). Elsevier Science Ltd, Nord HollandGoogle Scholar
  10. 10.
    Magnitskii NA, Sidorov SV (2004) Novye metody khaoticheskoi dinamiki (new methods of chaotic dynamics). Editorial URSS, Moscow. (in Russian)Google Scholar
  11. 11.
    Mal’tsev AI (1970) Osnovy lineinoi algebry (foundations of linear algebra). Nauka, Moscow. (in Russian)Google Scholar
  12. 12.
    Orlov AI (2002) Ekonometrika (Econometrics). Ekzamen, Moscow. (in Russian)Google Scholar
  13. 13.
    National Bank of Kazakhstan: official foreign exchange rates on average for different periods.
  14. 14.
    Petrenko EI (2006) Development and implementation of symbolic set construction algorithms, differentsial’nye uravneniya i protsessy upravleniya, no. 3, pp. 55–96. (in Russian)Google Scholar
  15. 15.
    Abdiev KS (ed) (2001–2009) Statisticheskii ezhegodnik Kazakhstana (the statistical yearbook of Kazakhstan). Agency of Statistics of the Republic of Kazakhstan, AlmatyGoogle Scholar
  16. 16.
    Input-Output Tables for the Republic of Kazakhstan. Scholar
  17. 17.
    Ulam S (1960) Problems in modern mathematics. Wiley, New YorkGoogle Scholar
  18. 18.
    Holodniok M, Klich A, Kubichek M, Marek M (1986) Methods of analysis of nonlinear dynamic models. Academia, Prague. (In Czech)Google Scholar
  19. 19.
    Ekeland I, Témam R (1987) Convex analysis and variational problems. SIAM, PhiladelphiaGoogle Scholar
  20. 20.
    Abouharb R, Duchesne E (2011) World bank structural adjustment programs and their impact on economic growth: a selection corrected analysis. In: The 4th annual conference on the political economy of international organizations.
  21. 21.
    Albonico A, Calés L et al The global multi-country model (GM): an estimated DSGE model for Euro Area countries. European Commission JRC working paper in economics and finance no. 2017/10Google Scholar
  22. 22.
    André FJ, Cardenete MA, Romero C, Designing Public Policies (2010) An approach based on multi-criteria analysis and computable general equilibrium modeling. In: Lecture notes in economics and mathematical systems, vol 642. Springer, BerlinGoogle Scholar
  23. 23.
    Antosiewicz M, Kowal P MEMO III – a large scale multi-sector DSGE model. IBS Research report no. 02/2016Google Scholar
  24. 24.
    Baxter M, King RG (1999) Measuring business cycles approximate band-pass filters for economic time series. Rev Econ Stat 81(4):575–593Google Scholar
  25. 25.
    Beidas-Strom S, Cashin P (2011) Are middle eastern current account imbalances excessive? IMF working paper no. 11–195Google Scholar
  26. 26.
    Bergstrom T (2015) Lecture notes on elasticity of substitution.
  27. 27.
    Bofinger P, Wollmershauser T Managed floating: theory, practice and ERM II.
  28. 28.
    Breuss F (2009) An estimated two-country DSGE model of Austria and the Euro Area. Empirica 36(1):123–158Google Scholar
  29. 29.
    Chow GC, Lin A (1971) Best linear unbiased interpolation, distribution, and extrapolation of time series by related series. Rev Econ Stat 55:372–375Google Scholar
  30. 30.
    Christoffel K, Coenen G, Warne A (2008) The new area-wide model of the Euro Area: a micro-founded open-economy model for forecasting and policy analysis. European Central Bank working paper no. 0944Google Scholar
  31. 31.
    Corong EL, Hertela TW, Mcdougall RA, Tsigas ME, van der Mensbrugghe D (2017) The standard GTAP model, version 7. J Glob Econ Anal 2(1):1–119Google Scholar
  32. 32.
    Del Negro M, Schorfheide F (2008) Forming priors for DSGE models. J Monet Econ 55(7):1191–1208Google Scholar
  33. 33.
    Devarajan S, Robinson S (2002) The impact of computable general equilibrium models on policy. In: Conference on frontiers in applied general equilibrium modeling.
  34. 34.
    Dixon PB, Parmenter BR (1996) Computable general equilibrium modelling for policy analysis and forecasting. In: Handbook of computational economics, vol 1. Elsevier Science B.V, Melbourne, pp 3–85Google Scholar
  35. 35.
    Ianchovichina E, Walmsley T (eds) (2012) Dynamic modeling and applications for global economic analysis. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Fair RC Macroeconometric modeling.
  37. 37.
    Fair RC, Taylor JB (1983) Solution and maximum likelihood estimation of dynamic nonlinear rational expectations model. Econometrica 51(4):1169–1185Google Scholar
  38. 38.
  39. 39.
    Foroni C, Guerin P, Marcellino M Using low frequency information for predicting high frequency variables.
  40. 40.
    Fujiwara I, Hara N, Hirosr Y, Taranishi Y (2005) The Japanese economic model (JEM). Monetary Econ Stud 23(2):61–142Google Scholar
  41. 41.
  42. 42.
    Geweke J (1999) Using simulation methods for bayesian econometric models: inference, development and communication. Econ Rev 18(1):1–73Google Scholar
  43. 43.
  44. 44.
    Gomes S, Jacquinot P, Pisani M, The EAGLE (2010) A model for policy analysis of macroeconomic interdependence in the Euro Area. Bank of Italy working paper no. 770Google Scholar
  45. 45.
    Grander C, Newbold P (1974) Spurious regressions in econometrics. J Econ 2:111–120Google Scholar
  46. 46.
    Granger C, Jeon Y (2004) Thick modeling. Econ Model 21:323–343Google Scholar
  47. 47.
    GTAP Data Base. Scholar
  48. 48.
    Hamilton J (1994) Time series analysis. Princeton University Press, PrincetonGoogle Scholar
  49. 49.
    UN. Statistics Division (1999) Handbook of input-output table compilation and analysis. United Nations, New YorkGoogle Scholar
  50. 50.
    Hastings W (1970) Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57(1):97–109Google Scholar
  51. 51.
    Herbsta E, Schorfheide F (2012) Evaluating DSGE model forecasts of comovements. J Econ 171(2):152–166Google Scholar
  52. 52.
    Iacoviello M (2015) Financial business cycles. Rev Econ Dyn 18(1):140–163Google Scholar
  53. 53.
    Isard P, Faruqee H (1998) Exchange rate assessment: extensions of the macroeconomic balance approach. IMF Occasional paper no. 167Google Scholar
  54. 54.
    Khan HA (2004) Using macroeconomic computable general equilibrium models for assessing poverty impact of structural adjustment policies. ADB Institute Discussion paper no. 12.
  55. 55.
    Kumhof M, Laxton D, Muir D, Mursula S (2010) The global integrated monetary and fiscal model (GIMF) – theoretical structure. IMF working paper no. 10/34Google Scholar
  56. 56.
    Lalonde R, Muir D (2007) The bank of Canada’s version of the global economy model (BoC-GEM). Bank of Canada Technical report no. 98Google Scholar
  57. 57.
    Lee J et al (2008) Exchange rate assessments: CGER methodologies. IMF Occasional paper no. 261Google Scholar
  58. 58.
    Leeper E, Plante M, Traum N (2014) Dynamics of fiscal financing in the United States. NBER working paper no. 15160.
  59. 59.
    Ljung GM, Box GEP (1978) On a measure of a lack of fit in time series models. Biometrika 65(2):297–303Google Scholar
  60. 60.
  61. 61.
    Measuring Inflation – the Harmonized Index of Consumer Prices (HICP).
  62. 62.
    Medina JP, Soto C (2007) The chilean business cycles through the lens of a stochastic general equilibrium model. Central Bank of Chile working paper no. 457Google Scholar
  63. 63.
    More JJ, Sorensen DC (1983) Computing a trust region step. SIAM J Sci Stat Comput 3:553–572Google Scholar
  64. 64.
    Naastepad CWM (2002) Effective supply failures and structural adjustment: a real–financial model with reference to India. Cambridge J Econ 26(5):637–657Google Scholar
  65. 65.
    Negro MD, Eusepi S et al (2013) The FRBNY DSGE model. The Federal Reserve Bank of New York Staff report no. 647Google Scholar
  66. 66.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313Google Scholar
  67. 67.
  68. 68.
    Quint D, Rabanal P (2014) Monetary and macroprudential policy in an estimated DSGE model of the Euro Area. Int J Cent Bank 10(2):169–236Google Scholar
  69. 69.
    Razafindrabe TM, Multi-Country A (2016) DSGE model with incomplete exchange rate pass-through: an application for the Euro-Area. Econ Model 52(Part A):78–100Google Scholar
  70. 70.
    Rees D, Smith P, Hall J A multi-sector model of the Australian economy. Reserve Bank of Australia Research Discussion paper no. 2015–07Google Scholar
  71. 71.
    Resende CD, Dib A, Kichian M (2010) Alternative optimized monetary policy rules in multi-sector small open economies: the role of real rigidities. Bank of Canada working paper no. 9Google Scholar
  72. 72.
    Robinson C (1980) Structural stability on manifolds with boundary. J Differ Equ 37:1–11Google Scholar
  73. 73.
    Shishido S, Nakamura O (1992) Induced technical progress and structural adjustment: a multi-sectoral model approach to Japan’s growth alternatives. J Appl Input-Output Anal 1(1):1–23Google Scholar
  74. 74.
    Sims C (2002) Solving linear rational expectations models. Comput Econ 20(1):1–20Google Scholar
  75. 75.
    Sims С Random lagrange multipliers аnd transversality.
  76. 76.
    Smets F et al (2010) DSGE models and their use at the ECB. SERIEs 1(1–2):51–65Google Scholar
  77. 77.
    Smets F, Wouters R (2003) An estimated dynamic stochastic general equilibrium model of the Euro Area. J Eur Econ Assoc 1(5):1123–1175Google Scholar
  78. 78.
    Tapiero CS (1998) Applied stochastic models and control for finance and insurance. Springer, New YorkGoogle Scholar
  79. 79.
    Tokarick S (2014) A method for calculating export supply and import demand elasticities. J Int Trade Econ Dev 23(7):1059–1087Google Scholar
  80. 80.
    Tovar CE (2009) DSGE models and central banks. Economics 3(16):1–31Google Scholar
  81. 81.
    World Economic Outlook Databases.
  82. 82.
    World Integrated Trade Solution.
  83. 83.
    Zografakis S, Sarris A (2015) A multisectoral computable general equilibrium model for the analysis of the distributional consequences of the economic crisis in Greece. In: The 14th conference on research on economic theory and econometrics.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdykappar A. Ashimov
    • 1
  • Yuriy V. Borovskiy
    • 1
  • Dmitry A. Novikov
    • 2
  • Bakyt T. Sultanov
    • 1
  • Mukhit A. Onalbekov
    • 1
  1. 1.Kazakh National Research Technical University after K.I. SatpayevAlmaty CityKazakhstan
  2. 2.V.A.Trapeznikov Institute of Control Sciences (Russian Academy of Sciences)MoscowRussia

Personalised recommendations