Application of Magnesium Alloys in Automotive Industry-A Review

  • Balaji Viswanadhapalli
  • V. K. Bupesh RajaEmail author
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


Fuel economy and environmental conservation are the major factors to consider magnesium alloys for automotive industry and aero space and other electronics companies. The key features like high strength to density ratio, moderate damping capacity, recyclability, reduced CO2 emissions are added advantages of magnesium alloys in automotive applications. This article reviews historical trends and near future applications of magnesium alloys in automotive industry. As magnesium loses its strength and creep resistance abilities, alternative magnesium alloys are to be explored to supply automotive components in the industry on demand. The objective of this study is to review and evaluate the applications of magnesium in the automotive industry that can significantly contribute to greater fuel economy and environmental conservation. In this study, the current trends, challenges, technological obstacles and future scope of magnesium alloys in the automotive industry are discussed. The consumption of magnesium in automotive industry with reference to environment is explored. Innovative welding and forming techniques available today are encouraging factors for extended use of magnesium and its alloys in automotive sector. This review offer insights and opportunities to researchers for further study and investigation of challenges in the field of automobile industry.


Magnesium alloys Automotive industry Fuel economy CO2 emissions 


  1. 1.
    Davies G (2003) Magnesium. Materials for automotive bodies, Elsevier, G. London, pp 91, 158, 159Google Scholar
  2. 2.
    Kuo, J.L., Sugiyama, S., Hsiang, S.H., Yanagimoto, J.: Investigating the characteristics of AZ61 magnesium alloy on the hot and semi-solid compression test. Int. J. Adv. Manuf. Technol. 29(7–8), 670–677 (2006)CrossRefGoogle Scholar
  3. 3.
    Jain, C.C., Koo, C.H.: Creep and corrosion properties of the extruded magnesium alloy containing rare earth. Mater. Trans. 2, 265–272 (2007)CrossRefGoogle Scholar
  4. 4.
    Fu, P., Peng, L., Jiang, H., Chang, J., Zhai, C.: Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Mater. Sci. Eng., A 486, 183–192 (2008)CrossRefGoogle Scholar
  5. 5.
    Greiner, J., Doerr, C., Nauerz, H., Graeve, M.: The new “7G-TRONIC” of Mercedes-Benz: innovative transmission technology for better driving performance, comfort, and fuel economy. SAE Technical Paper No. 2004-01-0649. SAE International, Warrendale, PA (2004)Google Scholar
  6. 6.
    Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRefGoogle Scholar
  7. 7.
    Blawert, C., Hort, N., Kainer, K.V.: Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 57(4), 397–408 (2004)Google Scholar
  8. 8.
    Eliezer, D., Aghion, E., Froes, F.H.: Magnesium science and technology. Adv. Mater. Perform. 5, 201–212 (1998)CrossRefGoogle Scholar
  9. 9.
    Aghion, E., Bronfin, B.: Magnesium alloys development towards the 21(st) century. Magnes. Alloys 2000 Mater. Sci. Forum 350(3), 19–28 (2000)Google Scholar
  10. 10.
    Friedrich, H., Schumann, S.: Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 117, 276–281 (2001)CrossRefGoogle Scholar
  11. 11.
    Schuman, S.: The paths and strategies for increased magnesium application in vehicles. Mater. Sci. Forum 488–489, 1–8 (2005)CrossRefGoogle Scholar
  12. 12.
    Dieringa, H., Kainer, K.U.: Magnesium-der zukunftswerkstoff für die automobilindustrie. Mat-wiss U Werkstofftech 38(2), 91–95 (2007)Google Scholar
  13. 13.
    Tang, B., Xs, W., Li, S.S., Zeng, D.B., Wu, R.: Effects of Ca combined with Sr additions on microstructure and mechanical properties of AZ91D. Mater. Sci. Technol. 21(29), 574–578 (2005)CrossRefGoogle Scholar
  14. 14.
    Sameer Kumar, D., et al.: Am. J. Mater. Sci. Technol. 4(1), 12–30 (2005)Google Scholar
  15. 15.
    Avedesian, M.M., Baker, H.: ASM Specialty Handbook, Magnesium and Magnesium Alloys. ASM International, Materials Park (1999)Google Scholar
  16. 16.
    Timminco Corporation: Timminco Magnesium Wrought Products. Timminco Corporation Brochure, Aurora, CO (1998)Google Scholar
  17. 17.
    Luo, A.A., Sachdev, A.K.: Development of a new wrought magnesium-aluminium- manganese alloy AM30. Metall. Mater. Trans. A 38A, 1184–1192 (2007)CrossRefGoogle Scholar
  18. 18.
    ASM: Metals Handbook, Desk Edn. ASM International, Materials Park (1998)Google Scholar
  19. 19.
    Brown, R.E.: Future of magnesium developments in 21st century. In: Presentation at Materials Science and Technology Conference, Pittsburgh, PA, USA, 5–9 October 2008Google Scholar
  20. 20.
    Barnes, L.T.: Rolled magnesium products, ‘what goes around, comes around’. In: Proceedings of the International Magnesium Association, Chicago, IL, pp. 29–43 (1992)Google Scholar
  21. 21.
    Friedrich, H.E., Mordike, B.L., et al.: Magnesium Technology. Springer, Berlin (2006)Google Scholar
  22. 22.
    Gupta, M., et al.: Magnesium, Magnesium Alloys, and Magnesium Composites. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  23. 23.
    Powell, B.R., Krajewski, P.E., Luo, A.A.: ‘Magnesium alloys’, in Materials Design and Manufacturing for Lightweight Vehicles, pp. 114–168. Woodhead Publishing Ltd., Cambridge (2010)CrossRefGoogle Scholar
  24. 24.
    Luo, A.A., Sachdev, A.K.: General motors global research and development. In: Applications of Magnesium Alloys in Automotive Engineering. Woodhead Publishing Limited, Cambridge, UK, pp: 393–414 (2012)CrossRefGoogle Scholar
  25. 25.
    Tanski, L.A., Dobrzanski, Labisz, K.: IISUES 1, 2 (2010)Google Scholar
  26. 26.
    Krajewski, P.E.: Elevated temperature behaviour of sheet magnesium alloys. SAE Technical Paper 2001-01-3104. SAE International, Warrendale, PA (2001)Google Scholar
  27. 27.
    Verma, R., Carter, J.T.: Quick plastic forming of a Decklid inner panel with commercial AZ31 magnesium sheet. SAE International Technical Paper No. 2006-01-0525. SAE International, Warrendale, PA (2006)Google Scholar
  28. 28.
    Carter, T., Krajewski, P.E., Verma, R.: The hot blow forming of AZ31 Mg sheet: formability assessment and application development. J. Miner. Met. Mater. 60(11), 77–81 (2008)CrossRefGoogle Scholar
  29. 29.
    Mendis, C.L., Bettles, C.J., Gibson, M.A., Hutchinson, C.R.: An enhanced age hardening response in Mg–Sn based alloys containing Zn. Mater. Sci. Eng., A 435(436), 163–171 (2006)CrossRefGoogle Scholar
  30. 30.
    Luo, A.A., Sachdev, A.K.: Microstructure and mechanical properties of Mg-Al-Mn and Mg-Al-Sn alloys. In: Nyberg, E.A., Agnew, S.R., Neelameggham, N.R., Pekguleryuz, M.O. (eds.) Magnesium Technology 2009, pp. 437–443. TMS, Warrendale, PA (2009)Google Scholar
  31. 31.
    Luo, A.A., Shi, W., Sadayappan, K., Nyberg, E.A.: Magnesium front end research and development: Phase I progress report of a Canada-China-USA collaboration. In: Proceedings of IMA 67th Annual World Magnesium Conference. International Magnesium Association (IMA), Wauconda, IL, USA (2010)Google Scholar
  32. 32.
    Easton, M., Beer, A., Barnett, M., Davies, C., Dunlop, G., et al.: Magnesium alloy applications in automotive structures. JOM 60(11), 57–62 (2008)CrossRefGoogle Scholar
  33. 33.
    Wagner, D.A., Logan, S.D., Wang, K., Skszek, T., Salisbury, C.P.: Test results and FEA predictions from magnesium AM30 extruded beams in bending and axial compression. In: Nyberg, E.A., Agnew, S.R., Neelameggham, N.R., Pekguleryuz, M.O. (eds.) Magnesium Technology 2009. TMS, Warrendale, PA (2009)Google Scholar
  34. 34.
    Kiani, M., et al.: Design of lightweight magnesium car body structure under crash and vibration constraints. J. Magnes. Alloy. 2, 99–108 (2014)CrossRefGoogle Scholar
  35. 35.
    Logan, S., Kizyma, A., Patterson, C., Rama, S.: Lightweight magnesium-intensive body structure. SAE International Technical Paper No. 2006-01-0523. SAE International, Warrendale, PA (2006)Google Scholar
  36. 36.
    Li, Z., et al.: Mater. Sci. Eng., A 647, 113–126 (2015)CrossRefGoogle Scholar
  37. 37.
    Li, Z.M., Fu, P.H., Peng, L.M., Wang, Y.X., Jiang, H.Y., Wu, G.H.: Mater. Sci. Eng., A 579, 170–179 (2013)CrossRefGoogle Scholar
  38. 38.
    Wang, Q.G., Davidson, C.J., Griffiths, J.R., Crepeau, P.N.: Metall. Mater. Trans. B 44, 887–895 (2006)CrossRefGoogle Scholar
  39. 39.
    Wang, Q.G., Apelian, D., Lados, D.A.: J. Light Met. 1, 73–84 (2001)CrossRefGoogle Scholar
  40. 40.
    Wang, Q.G., Jones, P.E.: Metall. Mater. Trans. B 38, 615–621 (2007)CrossRefGoogle Scholar
  41. 41.
    Mayer, H., Papakyriacou, M., Zettl, B., Stanzl-Tschegg, S.E.: Int. J. Fatigue 25, 245–256 (2003). [16] Xu, D.K., Liu, L., Xu, B.Y., Han, E.H.: Acta Mater. 56, 985–994 (2008)Google Scholar
  42. 42.
    Horstemeyer, M.F., Yang, N., Gall, K., McDowell, D.L., Fan, J., Gullett, P.M.: Acta Mater. 52, 1327–1336 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of MechanicalSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Automobile Engineering-School of MechanicalSathyabama Institute of Science and TechnologyChennaiIndia
  3. 3.Department of Mechanical EngineeringGokaraju Rangaraju Institute of Engineering and TechnologyHyderabadIndia

Personalised recommendations