Beamforming Techniques for Millimeter Wave Communications - A Survey

  • J. Mercy SheebaEmail author
  • S. Deepa
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


Millimeter wave communication has procured prominent focus among the research fraternity owing to the ever-increasing wireless user data in recent times which has turned out to be the driving force in exploring the different regions of the radio frequency bands to meet the dynamic user requirements. Millimeter wave supports multitude of users and can achieve high data rates and poses practical and reasonable solutions to the capacity crunch faced by the next generation wireless networks. The concept of antenna beamforming has made a significant progress in the wireless communication field and aids the development of robust communication link. This paper reviews the different beamforming approaches namely Analog, Digital and Hybrid Beamforming techniques for millimeter wave communications systems and view their system architectures. The key advantages and limitations associated with each technique are discussed. This paper throws light on the best suited method for millimeter wave communication systems.


Millimeter wave Analog Digital Hybrid beamforming 


  1. 1.
    Kutty, S., Sen, D.: Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutorials 18(2), 949–973 (2016). 2nd QuartCrossRefGoogle Scholar
  2. 2.
    Ahmed, I., Khammari, H., Shahid, A., Musa, A., Kim, K.S., Moerman, I.: A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun. Surv. Tutorials 20(4), 3060–3097 (2018). Fourth QuarterCrossRefGoogle Scholar
  3. 3.
    Yang, B., Yu, Z., Lan, J., Zhang, R., Zhou, J., Hong, W.: Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans. Microwave Theory Tech. 66(7), 3403–3418 (2018)CrossRefGoogle Scholar
  4. 4.
    Rappaport, T.S., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  5. 5.
    Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)CrossRefGoogle Scholar
  6. 6.
    5G vision, enablers and challenges for the wireless future, Durban, South Africa, Wireless World Res. Forum, White Paper (2015)Google Scholar
  7. 7.
    More than 50 billion connected devices, Stockholm, Sweden, Ericsson, L.M. White Paper (2011)Google Scholar
  8. 8.
    The 1000x mobile data challenge, San Diego, CA, USA, Qualcomm, White Paper, November 2013Google Scholar
  9. 9.
    5G: a technology vision, Shenzhen, China, Huawei, White Paper, pp. 1–16 (2014)Google Scholar
  10. 10.
    Hossain, E., Rasti, M., Tabassum, H., Abdelnasser, A.: Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wirel. Commun. 21(3), 118–127 (2014)CrossRefGoogle Scholar
  11. 11.
    Yong, S.K., Xia, P., Garcia, A.V.: 60 GHz Technology for Gbps WLAN, WPAN: From Theory to Practice. Wiley, Hoboken (2011)Google Scholar
  12. 12.
    Huang, K.-C., Wang, Z.: Millimeterwave Communication Systems. Wiley/IEEE Press, Hoboken (2011)CrossRefGoogle Scholar
  13. 13.
    Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Standard 802.11 ad-2012, December 2012Google Scholar
  14. 14.
    Poon, A., Taghivand, M.: Supporting and enabling circuits for antenna arrays in wireless communications. Proc. IEEE 100(7), 2207–2218 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Lan, Z., Pyo, C.W.: Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J. Sel. Areas Commun. 27(8), 3–4 (2009)CrossRefGoogle Scholar
  16. 16.
    Heath Jr., R.W., González-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10(3), 436–453 (2016)CrossRefGoogle Scholar
  17. 17.
    Molisch, A.F., et al.: Hybrid beamforming for massive MIMO—a survey, pp. 1–14. arXiv Preprint. (2016)
  18. 18.
    Bogale, T.E., Le, L.B., Haghighat, A., Vandendorpe, L.: On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming. IEEE Trans. Wirel. Commun. 15(5), 3311–3326 (2016)CrossRefGoogle Scholar
  19. 19.
    Han, S., Chih-Lin, I., Xu, Z., Rowell, C.: Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015)CrossRefGoogle Scholar
  20. 20.
    Alkhateeb, A., El Ayach, O., Leus, G., Heath Jr., R.W.: Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Topics Signal Process. 8(5), 831–846 (2014)CrossRefGoogle Scholar
  21. 21.
    Sohrabi, F., Yu, W.: Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Topics Signal Process. 10(3), 501–513 (2016)CrossRefGoogle Scholar
  22. 22.
    Alkhateeb, A., El Ayach, O., Leus, G., Heath, R.W.: Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: Proceedings of Information Theory and Application Workshops, San Diego, CA, USA, pp. 1–5 (2013)Google Scholar
  23. 23.
    Singh, J., Ramakrishna, S.: On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays. In: Proceedings of IEEE Global Communications Conference, Austin, TX, USA, pp. 3802–3808 (2014)Google Scholar
  24. 24.
    Park, S., Alkhateeb, A., Heath, R.W.: Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems. IEEE Trans. Wirel. Commun. 16(5), 2907–2920 (2017)CrossRefGoogle Scholar
  25. 25.
    Araújo, D.C., et al.: Massive MIMO: survey and future research topics. IET Commun. 10(15), 1938–1946 (2016)CrossRefGoogle Scholar
  26. 26.
    Alkhateeb, A., Heath Jr., R.W.: Frequency selective hybrid precoding for limited feedback millimeter wave systems. IEEE Trans. Commun. 64(5), 1801–1818 (2016)CrossRefGoogle Scholar
  27. 27.
    Sohrabi, F., Yu, W.: Hybrid digital and analog beamforming design for large-scale MIMO systems. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, QLD, Australia (2015)Google Scholar
  28. 28.
    Sohrabi, F., Yu, W.: Hybrid beamforming with finite-resolution phase shifters for large-scale MIMO systems. In: Proceedings IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications, Stockholm, Sweden, pp. 136–14 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Panimalar Engineering CollegeChennaiIndia

Personalised recommendations