Low Power Device Synchronization Protocol for IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) in Internet of Things (IoT)

  • R. Rajesh
  • C. AnnaduraiEmail author
  • D. Ramkumar
  • I. Nelson
  • I. Jayakaran Amalraj
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 35)


Massive growth in wireless devices and the need for interconnecting these devices results to form an Internet of Things (IoT). IoT applications can be easily implemented using an Ipv6 address based 6LoWPAN mesh network technology. 6LoWPAN MAC layer plays a compelling role in the economical usage of energy and resource consumption for low power wireless devices. We propose a new MAC protocol to improve the performance, including throughput and energy utilization using SCMAC algorithm in the MAC layer rather than orthodox CSMA with collision avoidance technique. The developed Suppressed Clear to Send MAC (SCMAC) protocol shows a convincing improvement in throughput and energy utilization of IPv6 based LoWPAN devices.


Internet of Things Media access control 6LoWPAN Throughput 


  1. 1.
    Srivastava, N.: Challenges of next-generation wireless sensor networks and its impact on society. J. Telecommun. 1(1), 128–133 (2010)Google Scholar
  2. 2.
    Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7, 537–568 (2009)CrossRefGoogle Scholar
  3. 3.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: IPv6 over low power wireless personal area networks (6LowPAN). Technical report, The Internet Engineering Task Force (IETF) (2007)Google Scholar
  4. 4.
    Misic, J., Shairmina Shafi, K.R.: The impact of MAC parameters on the performance of 802.15.4 PAN (2005). Scholar
  5. 5.
    Tan, L., Wang, N.: Future internet-the Internet of Things. In: Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, pp. 376–380 (2010)Google Scholar
  6. 6.
    IEEE Std 802.14.3-2006, September, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) (2012)Google Scholar
  7. 7.
    Mišic, J., Shafi, S., Mišic, V.B.: The impact of MAC parameters on the performance of 802.15.4 PAN. Ad Hoc Netw. 3, 509–528 (2005)CrossRefGoogle Scholar
  8. 8.
    Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: a hybrid MAC for wireless sensor networks. IEEE Trans. Netw. 16, 511–524 (2008)CrossRefGoogle Scholar
  9. 9.
    Yedavalli, K., Krishnamachari, B.: Enhancement of the IEEE 802.15.4 MAC protocol for scalable data collection in dense sensor networks. In: Proceedings of International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2008), Berlin, Germany (2008)Google Scholar
  10. 10.
    Park, T.R., Kim, T.H., Choi, J.Y., Choi, S., Kwon, W.H.: Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. IEEE Electron. Lett. 41(18), 1017–1019 (2005)CrossRefGoogle Scholar
  11. 11.
    Shu, F., Sakurai, T., Zukerman, M., Vu, H.L.: Packet loss analysis of the IEEE 802.15.4 MAC without acknowledgment. IEEE Commun. Lett. 11(1), 79–81 (2007)CrossRefGoogle Scholar
  12. 12.
    Bertocco, M., Gamba, G., Sona, A., Vitturi, S.: Experimental characterization of wireless sensor networks for industrial applications. IEEE Trans. Instrum. Meas. 57(8), 1537–1546 (2008)CrossRefGoogle Scholar
  13. 13.
    Singh, C.K., Kumar, A., Ameer, P.M.: Performance evaluation of an IEEE 802.15.4 sensor network with a star topology. Wirel. Netw. 14(4), 543–568 (2008)CrossRefGoogle Scholar
  14. 14.
    Pollin, S., Ergen, M., Ergen, S., Bougard, B., Van der Perre, L., Moerman, I., Bahai, A., Catthoor, F.: Performance analysis of slotted carrier sense IEEE 802.15.4 medium access. IEEE Trans. Wirel. Commun. 7(9), 3359–3371 (2009)Google Scholar
  15. 15.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of IEEE Infocom, pp. 1567–1576 (2002)Google Scholar
  16. 16.
    Wang, J., Zhai, H., Fang, Y., Yuang, M.C.: Opportunistic media access control and rate adaptation for wireless ad hoc networks. In: Proceedings of IEEE International Conference on Communication, Paris, France (2004)Google Scholar
  17. 17.
    Sudhaakar, R., Zand, P.: 6TiSCH resource management and interaction using CoAP. Internet-Draft [work-in-progress], IETF Std., Rev. draft-ietf- 6tisch-coap-00 (2014)Google Scholar
  18. 18.
    Wu, D., Bao, L., Regan, A., Talcott, C.: Large-scale access scheduling in wireless mesh networks using social centrality. J. Parallel Distrib. Comput. 73, 1049–1065 (2013)CrossRefGoogle Scholar
  19. 19.
    Wei, D., Jin, Y., Vural, S., Moessner, K., Tafazolli, R.: An energy efficient clustering solution for wireless sensor networks. IEEE Trans. Wirel. Commun. 10, 3973–3983 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhuo, S., Song, Y.-Q., Wang, Z., Wang, Z.: Queue-MAC: a queue length aware hybrid CSMA/TDMA MAC protocol for providing dynamic adaptation to traffic and duty-cycle variation in wireless sensor networks. In: Factory Communication Systems (WFCS), pp. 105–114. IEEE (2012)Google Scholar
  21. 21.
    Zhuo, S., Wang, Z., Song, Y.Q., Wang, Z., Almeida, L.: A traffic adaptive multi-channel MAC protocol with dynamic slot allocation for WSNs. IEEE Trans. Mob. Comput. 15, 1600–1613 (2016)CrossRefGoogle Scholar
  22. 22.
    IEEE Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11, IEEE P802.11ah/D6.0, (Amendment to IEEE Std 802.11REVmc/D5.0), pp. 1–645 (2016)Google Scholar
  23. 23.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 packets over IEEE 802.15. 4 networks. Technical report (2007)Google Scholar
  24. 24.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: International Conference on Computer Communications (INFOCOM), vol. 3, pp. 1567–1576. IEEE (2002)Google Scholar
  25. 25.
    Park, I., Kim, D., Har, D.: MAC achieving low latency and energy efficiency in hierarchical M2 M networks with clustered nodes. IEEE Sens. J. 15(3), 1657–1661 (2015)CrossRefGoogle Scholar
  26. 26.
    Yan, H., Zhang, Y., Pang, Z., Xu, L.D.: Superframe planning and access latency of slotted MAC for industrial WSN in IoT environment. IEEE Trans. Ind. Inf. 10, 1242–1251 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Rajesh
    • 1
  • C. Annadurai
    • 1
    Email author
  • D. Ramkumar
    • 1
  • I. Nelson
    • 1
  • I. Jayakaran Amalraj
    • 2
  1. 1.ECESri Sivasubramaniya Nadar College of EngineeringChennaiIndia
  2. 2.MathematicsSri Sivasubramaniya Nadar College of EngineeringChennaiIndia

Personalised recommendations