Advertisement

Measuring Ethereum-Based ERC20 Token Networks

  • Friedhelm VictorEmail author
  • Bianca Katharina Lüders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

The blockchain and cryptocurrency space has experienced tremendous growth in the past few years. Covered by popular media, the phenomenon of startups launching Initial Coin Offerings (ICOs) to raise funds led to hundreds of virtual tokens being distributed and traded on blockchains and exchanges. The trade of tokens among participants of the network yields token networks, whose structure provides valuable insights into the current state and usage of blockchain-based decentralized trading systems. In this paper, we present a descriptive measurement study to quantitatively characterize those networks. Based on the first 6.3 million blocks of the Ethereum blockchain, we provide an overview on more than 64,000 ERC20 token networks and analyze the top 1,000 from a graph perspective. Our results show that even though the entire network of token transfers has been claimed to follow a power-law in its degree distribution, many individual token networks do not: they are frequently dominated by a single hub and spoke pattern. Furthermore, we generally observe very small clustering coefficients and mostly disassortative networks. When considering initial token recipients and path distances to exchanges, we see that a large part of the activity is directed towards these central instances, but many owners never transfer their tokens at all. In conclusion, we believe that our findings about the structure of token distributions on the Ethereum platform may benefit the design of future decentralized asset trade systems and can support and influence regulatory measures.

Keywords

Blockchain Ethereum Tokens Network analysis 

References

  1. 1.
    Akcora, C.G., Gel, Y.R., Kantarcioglu, M.: Blockchain: A Graph Primer. arXiv e-prints arXiv:1708.08749, August 2017
  2. 2.
    Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, I.: New kids on the block: an analysis of modern blockchains. arXiv e-prints arXiv:1606.06530, June 2016
  3. 3.
    Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32946-3_29CrossRefGoogle Scholar
  4. 4.
    Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms, applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 494–509. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_31CrossRefGoogle Scholar
  5. 5.
    Baumann, A., Fabian, B., Lischke, M.: Exploring the bitcoin network. In: WebDB 04: Proceedings of the 10th International Conference on Web Information Systems and Technologies (2014)Google Scholar
  6. 6.
    Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy, pp. 104–121, May 2015.  https://doi.org/10.1109/SP.2015.14
  7. 7.
    Broder, A., et al.: Graph structure in the web. Comput. Netw. 33(1), 309–320 (2000).  https://doi.org/10.1016/S1389-1286(00)00083-9CrossRefGoogle Scholar
  8. 8.
    Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009).  https://doi.org/10.1137/070710111MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Donato, D., Leonardi, S., Millozzi, S., Tsaparas, P.: Mining the inner structure of the web graph. J. Phys. A: Math. Theoret. 41(22), 224017 (2008)Google Scholar
  10. 10.
    Filtz, E., Polleres, A., Karl, R., Haslhofer, B.: Evolution of the bitcoin address graph. Data Science – Analytics and Applications, pp. 77–82. Springer, Wiesbaden (2017).  https://doi.org/10.1007/978-3-658-19287-7_11CrossRefGoogle Scholar
  11. 11.
    Gillespie, C.S.: Fitting heavy tailed distributions: the poweRlaw package. J. Stat. Softw. 64(2), 1–16 (2015). http://www.jstatsoft.org/v64/i02/
  12. 12.
    Haslhofer, B., Karl, R., Filtz, E.: O bitcoin where art thou? insight into large-scale transaction graphs. In: SEMANTICS (Posters, Demos), vol. 1695 (2016)Google Scholar
  13. 13.
    Inaoka, H., Ninomiya, T., Tanigushi, K., Shimizu, T., Takayasu, H.: Fractal network derived from banking transaction. An analysis of network structures formed by financial institutions. Bank of Japan Working Paper Series (04) (2004)Google Scholar
  14. 14.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48686-0_1CrossRefGoogle Scholar
  15. 15.
    Kyriakopoulos, F., Thurner, S., Puhr, C., Schmitz, S.W.: Network and eigenvalue analysis of financial transaction networks. Eur. Phys. J. B 71(4), 523 (2009).  https://doi.org/10.1140/epjb/e2009-00255-7CrossRefzbMATHGoogle Scholar
  16. 16.
    Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference IMC 2013, pp. 127–140. ACM, New York (2013).  https://doi.org/10.1145/2504730.2504747
  17. 17.
    Miller, A., et al.: Discovering Bitcoin’s Public Topology and Influential Nodes (2015)Google Scholar
  18. 18.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement IMC 2007, pp. 29–42. ACM, New York (2007).  https://doi.org/10.1145/1298306.1298311, http://doi.acm.org/10.1145/1298306.1298311
  19. 19.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  20. 20.
    Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. arXiv e-prints arXiv:1802.06038, February 2018
  21. 21.
    Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-4139-7_10
  22. 22.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_2CrossRefGoogle Scholar
  23. 23.
    Somin, S., Gordon, G., Altshuler, Y.: Network analysis of ERC20 tokens trading on ethereum blockchain. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 439–450. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96661-8_45CrossRefGoogle Scholar
  24. 24.
    Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutorials 18(3), 2084–2123 (2016).  https://doi.org/10.1109/COMST.2016.2535718
  25. 25.
    Van Steen, M.: Graph theory and complex networks. An Introduction, vol. 144 (2010)Google Scholar
  26. 26.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)Google Scholar
  27. 27.
    Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. https://github.com/ethereum/yellowpaper

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  1. 1.Technical University of BerlinBerlinGermany

Personalised recommendations