Advertisement

Adaptively Secure Constrained Pseudorandom Functions

  • Dennis Hofheinz
  • Akshay Kamath
  • Venkata KoppulaEmail author
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added feature that the (master) secret key holder, having secret key K, can produce a constrained key, \(K_f\), that allows for the evaluation of the PRF on a subset of the domain as determined by a predicate function f within some family \(\mathcal {F}\). While previous constructions gave constrained PRFs for poly-sized circuits, all reductions for such functionality were based in the selective model of security where an attacker declares which point he is attacking before seeing any constrained keys.

In this paper we give new constrained PRF constructions for arbitrary circuits in the random oracle model based on indistinguishability obfuscation. Our solution is constructed from two recently emerged primitives: an adaptively secure Attribute-Based Encryption (ABE) for circuits and a Universal Sampler Scheme as introduced by Hofheinz et al. Both primitives are constructible from indistinguishability obfuscation (\(i\mathcal {O}\)) (and injective pseudorandom generators) with only polynomial loss.

References

  1. 1.
    Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional encryption even with random oracles. Cryptology ePrint Archive, Report 2016/959 (2016)Google Scholar
  2. 2.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Advances in Cryptology - CRYPTO 2015–35th Annual Cryptology Conference, Proceedings, Part II, Santa Barbara, CA, USA, 16–20 August 2015, pp. 657–677 (2015)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, Proceedings, 2–6 May 2004, pp. 223–238 (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: ASIACRYPT, pp. 280–300 (2013)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Proceedings of CRYPTO 2014 (2014)Google Scholar
  7. 7.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Public-Key Cryptography - PKC 2014–17th International Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Proceedings, Argentina, 26–28 March 2014, pp. 501–519 (2014)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In: Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, 23–25 March 2015, Proceedings, Part II, pp. 1–30 (2015)Google Scholar
  9. 9.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: STOC, pp. 209–218 (1998)Google Scholar
  10. 10.
    Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_18CrossRefGoogle Scholar
  11. 11.
    Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Advances in Cryptology - CRYPTO 2013–33rd Annual Cryptology Conference, Proceedings, Part I, Santa Barbara, CA, USA, 18–22 August 2013, pp. 476–493 (2013)Google Scholar
  12. 12.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Advances in Cryptology - ASIACRYPT 2014–20th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part II, Kaoshiung, Taiwan, R.O.C., 7–11 December 2014, pp. 82–101 (2014)Google Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Advances in Cryptology - CRYPTO 2013–33rd Annual Cryptology Conference, Proceedings, Part II, Santa Barbara, CA, USA, 18–22 August 2013, pp. 479–499 (2013)Google Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014). http://eprint.iacr.org/
  16. 16.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS, pp. 464–479 (1984)Google Scholar
  17. 17.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013)Google Scholar
  18. 18.
    Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: Theory of Cryptography - 15th International Conference, TCC 2017, Proceedings, Part I, Baltimore, MD, USA, 12–15 November 2017, pp. 529–561 (2017)CrossRefGoogle Scholar
  19. 19.
    Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use universal parameters. In: ASIACRYPT (2016)Google Scholar
  20. 20.
    Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_5CrossRefGoogle Scholar
  21. 21.
    Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudorandom functions in the standard model. In: Advances in Cryptology - ASIACRYPT 2015–21st International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part I, Auckland, New Zealand, 29 November–3 December 2015, pp. 79–102 (2015)CrossRefGoogle Scholar
  22. 22.
    Kaliski, B., Staddon, J.: PKCS #1: RSA cryptography specifications version 2.0 (1998)Google Scholar
  23. 23.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM Conference on Computer and Communications Security, pp. 669–684 (2013)Google Scholar
  24. 24.
    Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In: Advances in Cryptology - EUROCRYPT 2014–33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Copenhagen, Denmark, 11–15 May 2014, pp. 58–76 (2014)CrossRefGoogle Scholar
  25. 25.
    Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building applications of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_6CrossRefzbMATHGoogle Scholar
  26. 26.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)Google Scholar
  27. 27.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  28. 28.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484 (2014)Google Scholar
  29. 29.
    U.S. Department of Commerce/National Institute of Standards and Technology: Digital Signature Standards (DSS) (2013). Federal Information Processing Standards Publication 186–4Google Scholar
  30. 30.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Advances in Cryptology - CRYPTO 2015–35th Annual Cryptology Conference, Proceedings, Part II, Santa Barbara, CA, USA, 16–20 August 2015, pp. 678–697 (2015)Google Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Dennis Hofheinz
    • 1
  • Akshay Kamath
    • 2
  • Venkata Koppula
    • 3
    Email author
  • Brent Waters
    • 2
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.University of Texas at AustinAustinUSA
  3. 3.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations