Advertisement

PRCash: Fast, Private and Regulated Transactions for Digital Currencies

  • Karl WüstEmail author
  • Kari Kostiainen
  • Vedran Čapkun
  • Srdjan Čapkun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11598)

Abstract

Fiat currency implemented as a blockchain can enable multiple benefits such as reduced cost compared to expensive handling of cash and better transparency for increased public trust. However, such deployments have conflicting requirements including fast payments, strong user privacy and regulatory oversight. None of the existing blockchain transaction techniques supports all of these three requirements. In this paper we design a new blockchain currency, called PRCash, that addresses the above challenge. The primary technical contribution of our work is a novel regulation mechanism for transactions that use cryptographic commitments. We enable regulation of spending limits using zero-knowledge proofs. PRCash is the first blockchain currency that provides fast payments, good level of user privacy and regulatory control at the same time.

References

  1. 1.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)Google Scholar
  2. 2.
    Bech, M.L., Garratt, R.: Central bank cryptocurrencies (2017)Google Scholar
  3. 3.
    Mills, D., et al.: Distributed ledger technology in payments, clearing, and settlement. Board of Governors of the Federal Reserve System, Washington (2016). https://doi.org/10.17016/FEDS.2016.095
  4. 4.
    Wilkins, C.A.: Fintech and the financial ecosystem: Evolution or revolution? (2016). http://www.bankofcanada.ca/wp-content/uploads/2016/06/remarks-170616.pdf
  5. 5.
    Mas working with industry to apply distributed ledger technology in securities settlement and cross border payments (2017). http://www.mas.gov.sg/News-and-Publications/Media-Releases/2017/MAS-working-with-industry-to-apply-Distributed-Ledger-Technology.aspx
  6. 6.
    Koning, J.P.: Fedcoin: a central bank-issued cryptocurrency. R3 Report, 15 (2016)Google Scholar
  7. 7.
    Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: 23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, 21–24 February 2016Google Scholar
  8. 8.
  9. 9.
    Billner, A.: Now there are plans for ‘e-krona’ in cash-shy sweden (2018). https://www.bloomberg.com/news/articles/2018-10-26/riksbank-to-develop-pilot-electronic-currency-amid-cash-decline
  10. 10.
    Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/~greg/confidential_values.txt
  11. 11.
    Jedusor, T.E.: Mimblewimble. http://mimblewimble.org/mimblewimble.txt
  12. 12.
    Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)Google Scholar
  13. 13.
    Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–98. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54970-4_5CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using E-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006).  https://doi.org/10.1007/11832072_10CrossRefzbMATHGoogle Scholar
  15. 15.
    31 CFR 1010.330 - Reports relating to currency in excess of \$10,000 received in a trade or business (2012). https://www.law.cornell.edu/cfr/text/31/1010.330
  16. 16.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  17. 17.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  18. 18.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_33CrossRefGoogle Scholar
  19. 19.
    Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)Google Scholar
  20. 20.
    Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_7CrossRefGoogle Scholar
  21. 21.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36413-7_20CrossRefGoogle Scholar
  22. 22.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_4CrossRefGoogle Scholar
  23. 23.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic
  24. 24.
    Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Efficient range proofs for confidential transactions. Technical report, Cryptology ePrint Archive, Report 2017/1066 (2017). https://eprint.iacr.org/2017/1066
  25. 25.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI 1999, pp. 173–186. USENIX Association, Berkeley, CA, USA (1999)Google Scholar
  26. 26.
    Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_8CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in zcash. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 463–477. USENIX Association, Baltimore, MD (2018)Google Scholar
  29. 29.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_47CrossRefGoogle Scholar
  30. 30.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_28CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Karl Wüst
    • 1
    Email author
  • Kari Kostiainen
    • 1
  • Vedran Čapkun
    • 2
  • Srdjan Čapkun
    • 1
  1. 1.Department of Computer ScienceETH ZurichZürichSwitzerland
  2. 2.HEC ParisJouy-en-JosasFrance

Personalised recommendations