• Ronald ChristensenEmail author
Part of the Springer Texts in Statistics book series (STS)


This chapter focuses on the theory of least squares estimation. It begins with a discussion of identifiability and estimability. It includes discussion of generalized least squares estimation and the possible advantages of biased estimation including Bayesian estimation.


  1. Aitchison, J., & Dunsmore, I. R. (1975). Statistical prediction analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Arnold, S. F. (1981). The theory of linear models and multivariate analysis. New York: Wiley.zbMATHGoogle Scholar
  3. Bedrick, E. J., Christensen, R., & Johnson, W. (1996). A new perspective on priors for generalized linear models. Journal of the American Statistical Association, 91, 1450–1460.MathSciNetCrossRefGoogle Scholar
  4. Berger, J. O. (1993). Statistical decision theory and Bayesian analysis (Revised 2nd ed.). New York: Springer.Google Scholar
  5. Berry, D. A. (1996). Statistics: A Bayesian perspective. Belmont: Duxbery.Google Scholar
  6. Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. New York: Wiley.zbMATHGoogle Scholar
  7. Christensen, R. (2018). Another look at linear hypothesis testing in dense high-dimensional linear models.
  8. Christensen, R., Johnson, W., Branscum, A., & Hanson, T. E. (2010). Bayesian ideas and data analysis: An introduction for scientists and statisticians. Boca Raton: Chapman and Hall/CRC Press.CrossRefGoogle Scholar
  9. Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. London: Chapman and Hall.CrossRefGoogle Scholar
  10. de Finetti, B. (1974, 1975). Theory of probability (Vols. 1, 2). New York: Wiley.Google Scholar
  11. DeGroot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill.zbMATHGoogle Scholar
  12. Eaton, M. L. (1983). Multivariate statistics: A vector space approach. New York: Wiley. Reprinted in 2007 by IMS Lecture Notes–Monograph Series.Google Scholar
  13. Geisser, S. (1993). Predictive inference: An introduction. New York: Chapman and Hall.CrossRefGoogle Scholar
  14. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton: Chapman and Hall/CRC.zbMATHGoogle Scholar
  15. Graybill, F. A. (1976). Theory and application of the linear model. North Scituate: Duxbury Press.zbMATHGoogle Scholar
  16. Guttman, I. (1970). Statistical tolerance regions. New York: Hafner Press.zbMATHGoogle Scholar
  17. Harville, D. A. (2018). Linear models and the relevant distributions and matrix algebra. Boca Raton: CRC Press.CrossRefGoogle Scholar
  18. Jeffreys, H. (1961). Theory of probability (3rd ed.). London: Oxford University Press.zbMATHGoogle Scholar
  19. Lehmann, E. L. (1983). Theory of point estimation. New York: Wiley.CrossRefGoogle Scholar
  20. Lehmann, E. L. (1986). Testing statistical hypotheses (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  21. Lindley, D. V. (1971). Bayesian statistics: A review. Philadelphia: SIAM.zbMATHGoogle Scholar
  22. Monahan, J. F. (2008). A primer on linear models. Boca Raton: Chapman & Hall/CRC Press.Google Scholar
  23. Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory. Boston: Division of Research, Graduate School of Business Administration, Harvard University.zbMATHGoogle Scholar
  24. Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  25. Ravishanker, N., & Dey, D. (2002). A first course in linear model theory. Boca Raton: Chapman and Hall/CRC Press.zbMATHGoogle Scholar
  26. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed.). New York: Wiley.zbMATHGoogle Scholar
  27. Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational implementation (2nd ed.). New York: Springer.zbMATHGoogle Scholar
  28. Savage, L. J. (1954). The foundations of statistics. New York: Wiley.zbMATHGoogle Scholar
  29. Schafer, D. W. (1987). Measurement error diagnostics and the sex discrimination problem. Journal of Business and Economic Statistics, 5, 529–537.Google Scholar
  30. Scheffé, H. (1959). The analysis of variance. New York: Wiley.zbMATHGoogle Scholar
  31. Searle, S. R. (1971). Linear models. New York: Wiley.zbMATHGoogle Scholar
  32. Seber, G. A. F. (1966). The linear hypothesis: A general theory. London: Griffin.zbMATHGoogle Scholar
  33. Seber, G. A. F. (1977). Linear regression analysis. New York: Wiley.zbMATHGoogle Scholar
  34. Seber, G. A. F. (2015). The linear model and hypothesis: A general theory. New York: Springer.CrossRefGoogle Scholar
  35. Wichura, M. J. (2006). The coordinate-free approach to linear models. New York: Cambridge University Press.CrossRefGoogle Scholar
  36. Zellner, A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations