Advertisement

Recent Advances in Development of NIR-II Fluorescent Agents

  • Haotian Du
  • Hao Wan
  • Hongjie DaiEmail author
Chapter
  • 129 Downloads

Abstract

In the past decade, biological imaging in the second near infrared (NIR-II) window has emerged as a promising imaging method to visualize deep-tissue anatomical structures and profile internal physiological status. Owing to advantages in reduced light absorption, suppressed photon scattering, and minimized interference from tissue autofluorescence, NIR-II imaging presents advantages on improved penetration depth and high spatial resolution, opening up wide opportunities to unmask the underlying mechanisms of various physiological processes. An ideal NIR-II fluorophore for in vivo fluorescence imaging should have high quantum yields, red-shifted emission wavelengths as well as favorable pharmacokinetic properties in order to afford high imaging quality, monitor dynamic physiological process in real time, and mitigate safety concerns. Here, in this chapter, we summarize recent advances in rational design and optimization of NIR-II fluorescence imaging agents with superior properties as mentioned above, present their applications, and offer our opinions on the unique potentials of these imaging agents for future clinical translation.

Keywords

Fluorescence imaging Second near infrared window Imaging agents High quantum yield Long wavelength Pharmacokinetics and biocompatibility 

References

  1. 1.
    Ntziachristos V et al (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313CrossRefGoogle Scholar
  2. 2.
    Guo Z et al (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16–29CrossRefGoogle Scholar
  3. 3.
    Choi HS et al (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31(2):148CrossRefGoogle Scholar
  4. 4.
    Naumova AV et al (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818CrossRefGoogle Scholar
  5. 5.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634CrossRefGoogle Scholar
  6. 6.
    Hof M et al (2005) Fluorescence spectroscopy in biology: Advanced methods and their applications to membranes. Springer, New York, p 305CrossRefGoogle Scholar
  7. 7.
    Hong G, Antaris AL, Dai HJNBE (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):0010CrossRefGoogle Scholar
  8. 8.
    Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711CrossRefGoogle Scholar
  9. 9.
    Ding F et al (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9(19):4370–4380CrossRefGoogle Scholar
  10. 10.
    Welsher K et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773CrossRefGoogle Scholar
  11. 11.
    Li C, Wang Q (2018) Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12(10):9654–9659CrossRefGoogle Scholar
  12. 12.
    Hong G et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841CrossRefGoogle Scholar
  13. 13.
    Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  14. 14.
    Yang Q et al (2017) Rational Design of Molecular Fluorophores for biological imaging in the NIR-II window. Adv Mater 29:12Google Scholar
  15. 15.
    Yang Q et al (2018) Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc 140(5):1715–1724CrossRefGoogle Scholar
  16. 16.
    Antaris AL et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235–242CrossRefGoogle Scholar
  17. 17.
    Zhang M et al (2018) Bright quantum dots emitting at approximately 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A 115(26):6590–6595CrossRefGoogle Scholar
  18. 18.
    Bruns OT et al (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056CrossRefGoogle Scholar
  19. 19.
    Hong G et al (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 51(39):9818–9821CrossRefGoogle Scholar
  20. 20.
    Zhong Y et al (2017) Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat Commun 8(1):737CrossRefGoogle Scholar
  21. 21.
    Naczynski DJ et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199CrossRefGoogle Scholar
  22. 22.
    Wang R et al (2014) Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl 53(45):12086–12090CrossRefGoogle Scholar
  23. 23.
    Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730CrossRefGoogle Scholar
  24. 24.
    Friend R et al (1999) Electroluminescence in conjugated polymers. Nat 397(6715):121CrossRefGoogle Scholar
  25. 25.
    Hong G et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206CrossRefGoogle Scholar
  26. 26.
    Qian G et al (2008) Band gap tunable, donor−acceptor−donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20(19):6208–6216CrossRefGoogle Scholar
  27. 27.
    Sun Y et al (2016) Novel benzo-bis (1, 2, 5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci 7(9):6203–6207CrossRefGoogle Scholar
  28. 28.
    Zhang XD et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular Fluorophore. Adv Mater 28(32):6872–6879CrossRefGoogle Scholar
  29. 29.
    Desmettre T, Devoisselle J, Mordon SJSoo (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45(1):15–27CrossRefGoogle Scholar
  30. 30.
    Antaris AL et al (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269CrossRefGoogle Scholar
  31. 31.
    Siegel JJCCRAL (2007) Principles of fluorescence spectroscopy. Choice Curr Rev Acad Lib 44:1196–1196Google Scholar
  32. 32.
    Wan H et al (2018) A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun 9(1):1171CrossRefGoogle Scholar
  33. 33.
    Gapontsev VP et al (1981) Mechanism and parameters of the quenching of luminescence of rare-earth ions by hydroxyl impurity groups in laser phosphate glass. Sov J Quantum Electron 11(8):1101–1103CrossRefGoogle Scholar
  34. 34.
    Su Q et al (2012) The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc 134(51):20849–20857CrossRefGoogle Scholar
  35. 35.
    Zhang L, Hu HJJoP, Solids Co (2002) The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses. J Phys Chem Solids 63(4):575–579CrossRefGoogle Scholar
  36. 36.
    Yan Y, Faber AJ, De Waal HJJoN-CS (1995) Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J Non-Cryst Solids 181(3):283–290CrossRefGoogle Scholar
  37. 37.
    Heer S et al (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4Nanocrystals. Adv Mater 16(23–24):2102–2105CrossRefGoogle Scholar
  38. 38.
    Yi G-S, Chow G-MJCoM (2007) Water-soluble NaYF4: Yb, Er (tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343CrossRefGoogle Scholar
  39. 39.
    Zhang F et al (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12(6):2852–2858CrossRefGoogle Scholar
  40. 40.
    Hines MA, Scholes GDJAM (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15(21):1844–1849CrossRefGoogle Scholar
  41. 41.
    Weidman MC et al (2014) Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8(6):6363–6371CrossRefGoogle Scholar
  42. 42.
    Tang J et al (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10(10):765CrossRefGoogle Scholar
  43. 43.
    Ma Z et al (2018) Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv Funct Mater 28(36):1803417CrossRefGoogle Scholar
  44. 44.
    Jin L et al (2016) Engineering interfacial structure in “Giant” PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy 30:531–541CrossRefGoogle Scholar
  45. 45.
    Neo DC et al (2014) Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. ACS Nano 26(13):4004–4013Google Scholar
  46. 46.
    Supran GJ et al (2015) High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv Mater 27(8):1437–1442CrossRefGoogle Scholar
  47. 47.
    Zhu S et al (2017) Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A 114(5):962–967CrossRefGoogle Scholar
  48. 48.
    Li B et al (2018) An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem Int Ed Engl 57(25):7483–7487CrossRefGoogle Scholar
  49. 49.
    Sheng Z et al (2018) Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I Photoacoustic imaging of Orthotopic brain tumors. Adv Mater 30:1800766CrossRefGoogle Scholar
  50. 50.
    Franke D et al (2016) Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat Commun 7:12749CrossRefGoogle Scholar
  51. 51.
    Zebibula A et al (2018) Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Int J Nanomed 28(9):1703451Google Scholar
  52. 52.
    Bashkatov A et al (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543CrossRefGoogle Scholar
  53. 53.
    Diao S et al (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8(9):3027–3034CrossRefGoogle Scholar
  54. 54.
    Diao S et al (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed Engl 54(49):14758–14762CrossRefGoogle Scholar
  55. 55.
    Naczynski D et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199CrossRefGoogle Scholar
  56. 56.
    Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165CrossRefGoogle Scholar
  57. 57.
    Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284CrossRefGoogle Scholar
  58. 58.
    Zhao H et al (2011) Effect of different types of surface ligands on the structure and optical property of water-soluble PbS quantum dots encapsulated by amphiphilic polymers. J Phys Chem C 115(5):1620–1626CrossRefGoogle Scholar
  59. 59.
    Moroz P et al (2014) Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem Mater 26(14):4256–4264CrossRefGoogle Scholar
  60. 60.
    Feng Y et al (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8(5):3703–3711CrossRefGoogle Scholar
  61. 61.
    Wan H et al (2018) Developing a bright NIR-II Fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct MaterGoogle Scholar
  62. 62.
    Wang W et al (2018) Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II Fluorophore-peptide probe. Adv Mater 30(22):1800106CrossRefGoogle Scholar
  63. 63.
    Saito T et al (2016) Two FOXP3+ CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679CrossRefGoogle Scholar
  64. 64.
    Peng M et al (2016) Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res 9(3):663–673CrossRefGoogle Scholar
  65. 65.
    Wang W et al (2018) Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II Fluorophore-peptide probe. Adv Mater 30(22):e1800106CrossRefGoogle Scholar
  66. 66.
    Sun Y et al (2017) Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8(5):3489–3493CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations