Determination of the Central Pattern Generator Parameters by a Neuro-Fuzzy Evolutionary Algorithm

  • Edgar Mario Rico Mesa
  • Jesús-Antonio Hernández-RiverosEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


The selection of appropriate parameters of a Central Pattern Generator (CPG) facilitates its use on applications in robotics. A Central Pattern Generator is class of oscillator represented by a system of n differential equations of first order with m parameters, finding those m parameters to match a specific behavior is a complex problem to solve. For the development of applications in robotics, such as locomotion, the CPG have been applied as a decentralized control system. In this work, a Neuro-Fuzzy Evolutionary procedure is proposed to determine the parameters of a CPG for a specific cases of 2, 3, 4, 5 and 6 neurons. The developed methodology is presented in detail. The proposed algorithm guarantees a given response in the frequency and amplitude into the ranges required.


CPG Digital filter Fuzzy classifier Recurrent Neural Network Genetic algorithms 


  1. 1.
    Kassim, M.H., Zainal, N., Arshad, M.R.: Central pattern generator in bio-inspired robot: simulation using MATLAB. In: 2nd International Conference Underwater System Technology, 4–5 November 2008, Bali, Indonesia (2008)Google Scholar
  2. 2.
    Cohen, A.H., Rossignol, S., Grillner, S.: Neural Control of Rhythmic Movements in Vertebrate, pp. 1–500. Wiley, Hoboken (1998)Google Scholar
  3. 3.
    Buchli, J., Ijspeert, A.J.: Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: 1st International Workshop Bio-ADIT. Lecture Notes in Computer Science, vol. 3141, pp. 333–349 (2004)CrossRefGoogle Scholar
  4. 4.
    Serón, M.M.: Sistemas no lineales, Notas de clase. Universidad Nacional de Rosario, Lab. de Sistemas Dinámicos y Procesamiento de Señales, pp. 1–161 (2000)Google Scholar
  5. 5.
    Rico, E.M., Hernandez, J.A.: Analysis and application of a displacement CPG-based method on articulated frames. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS. Advances in Computing, vol. 735, pp. 495–510. Springer (2017). Scholar
  6. 6.
    Ramírez Moreno, D.F.: Modelo computacional de la modulación de la transformación sensorial motora, tesis para optar título de doctor presentada a la Universidad del Valle (2006)Google Scholar
  7. 7.
    Consolini, L., Lini, G.: A Gauss-Newton method for the synthesis of periodic outputs with central pattern generators. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1394–1400 (2014)CrossRefGoogle Scholar
  8. 8.
    Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111, 105–127 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, C., Sui, Z., Li, H.: Equivariant bifurcation in a coupled complex-valued neural network rings. Chaos, Solitons Fractals 98, 22–30 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, W., Chen, W., Wu, X., Wang, J.: Parameter tuning of CPGs for hexapod gaits based on genetic algorithm. In: IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 45–50 (2015)Google Scholar
  11. 11.
    Maxim, B., Lev, S., Grigory, O., Arkady, P.: Complex chimera states in a nonlinearly coupled oscillatory medium. In: 2nd School on Dynamics of Complex Networks and Their Application in Intellectual Robotics (DCNAIR), pp. 17–20 (2018)Google Scholar
  12. 12.
    Tabi, C.B.: Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van Der Pol equation with fractional-order derivative term. Int. J. Non-Linear Mech. 105, 173–178 (2018)CrossRefGoogle Scholar
  13. 13.
    Balarezo Gallardo, F., Hernández-Riveros, J.-A.: Evolutionary parameter estimation of coupled non-linear oscillators. In: Solano, A., Ordoñez, H. (eds.) CCC 2017, CCIS. Advances in Computing, vol. 735, pp. 457–471. Springer (2017). Scholar
  14. 14.
    Cappelletto, J., Estévez, P., Grieco, J.C., Fernández-López, G., Armada, M.: A CPG-based model for gait synthesis in legged robot locomotion. In: 9th International conference on climbing and walking robots, pp. 56–64 (2006)Google Scholar
  15. 15.
    Cappelletto J., Estevez P., Grieco J.C., Medina–Melendez, W., Fernandez–Lopez, G.: Gait synthesis in legged robot locomotion using a CPG based model. In: Bioinspiraction and Robotics: Walking and Climbing Robots, Viena, pp. 227–246 (2007)Google Scholar
  16. 16.
    Bower, J.M., Beeman, D.: The Book of Genesis. Springer, Berlin (2003). (Chapter 8)zbMATHGoogle Scholar
  17. 17.
    Rico, E.M., Hernandez, J.A.: Modulation of central pattern generators (CPG) for the locomotion planning of an articulated robot. In: Florez, H., Diaz, C., Chavarriaga, J. (eds.) ICAI 2018. CCIS. Advances in Computing, vol. 942, pp. 321–334. Springer (2018). Scholar
  18. 18.
    Capellini, V., Constantinides, A., Emiliani, P.L.: Digital Filters and Their Applications. Techniques of Physics. Academic Press, London (1978)Google Scholar
  19. 19.
    Robert, C., Michal, J., Jacek, L.: Introduction to fuzzy systems. In: Theory and Applications of Ordered Fuzzy Numbers (2017). Scholar
  20. 20.
    Nozaki, K., Ishibuchi, H., Tanaka, H.: Adaptive fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 4(3), 238–250 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.SENAMedellínColombia
  2. 2.Universidad Nacional de ColombiaMedellínColombia

Personalised recommendations