Advertisement

User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA

  • Yenny P. Flórez
  • Alba J. JerónimoEmail author
  • Mónica E. Castillo
  • Adán A. Gómez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

The Towers of Hanoi is a mathematical problem, which consists of three pegs, and a number “n” of disks of distinct sizes which can slide onto any peg. A cognitive model is a theoretical, empirical and computational representation of mental processes which belong to a cognitive function. A cognitive model generates a human-like performance for developing tasks, correcting errors, using strategies, and acquiring knowledge. A cognitive model constructed in a cognitive architecture is characterized to be runnable and producing specific behaviors. A cognitive architecture is a general-purpose control framework based on scientific theories to specify computational models of human cognitive performance. CARINA is a metacognitive architecture for artificial intelligent agents, obtained from the MISM Metacognitive Meta model. The objective of this paper is to present a cognitive model based on NGOMS-L to solve the algorithm of the Towers of Hanoi that can be runnable in the metacognitive architecture CARINA. The methodology used for the analysis of the cognitive task was: pre-processing stage, processing stage, classification of subjects, description of cognitive task in natural language and finally description of the cognitive task in NGOMS-L. The results obtained showed that of the four subjects originally selected, three of them were able to solve the problem and only one abandoned the problem. In the classification made, a successful and an unsuccessful subject was selected, to represent the cognitive task in natural language and finally express in the NGOMS-L notation the different Goals, Operators, Methods, and Selection Rules.

Keywords

Towers of Hanoi Cognitive model Cognitive architecture Metacognitive architecture CARINA 

References

  1. 1.
    Crowley, K., Sliney, A., Pitt, I., Murphy, D.: Evaluating a brain-computer interface to categorise human emotional response. In: 2010 10th IEEE International Conference on Advanced Learning Technologies, pp. 276–278 (2010)Google Scholar
  2. 2.
    Simon, H.A.: Information-processing theory of human problem solving. Handb. Learn. Cogn. Process. 5, 271–295 (1978)Google Scholar
  3. 3.
    Reed, S.K.: The structure of ill-structured (and well-structured) problems revisited. Educ. Psychol. Rev. 28(4), 691–716 (2016)CrossRefGoogle Scholar
  4. 4.
    García, A.B.: Evaluación de estrategias de resolución de problemas. Rev. Educ. 287, 275–286 (1988)Google Scholar
  5. 5.
    Ericsson, K.A., Simon, H.A.: Protocol Analysis: Verbal Reports as Data. The MIT Press, Cambridge (1984)Google Scholar
  6. 6.
    Strube, G.: Cognitive modeling: research logic in cognitive science (2001)CrossRefGoogle Scholar
  7. 7.
    Marewski, J.N., Link, D.: Strategy selection: an introduction to the modeling challenge. Wiley Interdiscip. Rev. Cogn. Sci. 5(1), 39–59 (2014)CrossRefGoogle Scholar
  8. 8.
    Ziefle, M, et al.: A multi-disciplinary approach to ambient assisted living. In: E-Health, Assistive Technologies and Applications for Assisted Living: Challenges and Solutions, pp. 76–93. IGI Global (2011)Google Scholar
  9. 9.
    Fum, D., Del Missier, F., Stocco, A.: The cognitive modeling of human behavior: why a model is (sometimes) better than 10,000 words. Elsevier (2007)Google Scholar
  10. 10.
    Zacarias, M., Magalhaes, R., Caetano, A., Pinto, H.S., Tribolet, J.: Towards organizational self-awareness: an initial architecture and ontology. In: Handbook of Ontologies for Business Interaction, pp. 101–121. IGI Global (2008)Google Scholar
  11. 11.
    Jacko, J.A.: Human Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. CRC Press, Boca Raton (2012)Google Scholar
  12. 12.
    Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Hum. Factors 48(2), 362–380 (2006)CrossRefGoogle Scholar
  13. 13.
    Forsythe, C., Bernard, M.L., Goldsmith, T.E.: Cognitive Systems: Human Cognitive Models in Systems Design. Psychology Press, Hove (2006)Google Scholar
  14. 14.
    Hoffman, R.R.: How can expertise be defined? Implications of research from cognitive psychology. In: Exploring Expertise, pp. 81–100. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Van Rijn, H., Johnson, A., Taatgen, N.: Cognitive user modeling. In: Handbook Human Factors Web Design, 2nd edn. pp. 527–542. CRC Press, Boca Raton (2011)Google Scholar
  16. 16.
    Taylor, B.A., Harris, S.L.: Teaching children with autism to seek information-acquisition of novel information and generalization of responding. J. Appl. Behav. Anal. 28(1), 3–14 (1995)CrossRefGoogle Scholar
  17. 17.
    Carrillo, A.L., Guevara, A., Gálvez, S., Caro, J.L.: Interacción Guiada por Objetivos. In: Actas de INTERACCION, pp. 68–75 (2002)Google Scholar
  18. 18.
    Kieras, D.E.: A guide to GOMS model usability evaluation using GOMSL and GLEAN3, vol. 313. University of Michigan (1999)Google Scholar
  19. 19.
    John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques: comparison and contrast. ACM Trans. Comput. Interact. 3(4), 320–351 (1996)CrossRefGoogle Scholar
  20. 20.
    Forstmann, B.U., Wagenmakers, E.J.: An Introduction to Model-Based Cognitive Neuroscience. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10(2), 141–160 (2009)CrossRefGoogle Scholar
  22. 22.
    Jerónimo, A.J., Caro, M.F., Gómez, A.A.: Formal Specification of cognitive models in CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 614–619 (2018)Google Scholar
  23. 23.
    Olier, A.J., Gómez, A.A., Caro, M.F.: Cognitive modeling process in metacognitive architecture CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 579–585 (2018)Google Scholar
  24. 24.
    Cox, M.T.: Field review: metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005)CrossRefGoogle Scholar
  25. 25.
    Cox, M.T., Oates, T., Perlis D.: Toward an integrated metacognitive architecture. In: 2011 AAAI Fall Symposium Series (2011)Google Scholar
  26. 26.
    Samsonovich, A.V., De Jong, K.A.: Metacognitive architecture for team agents. In: Proceedings of the 25th Annual Meeting of the Cognitive Science Society, pp. 1029–1034 (2003)Google Scholar
  27. 27.
    Caro, M.F., Josvula, D.P., Gómez, A.A., Kennedy, C.M.: Introduction to the CARINA metacognitive architecture. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 530–540 (2018)Google Scholar
  28. 28.
    Jerónimo, A.J., Acosta, K., Caro, M.F., Rodriguez, R.: Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In: V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática (2017)Google Scholar
  29. 29.
    Caro, M.F., Josyula, D.P., Jiménez, J.A., Kennedy, C.M., Cox, M.T.: A domain-specific visual language for modeling metacognition in intelligent systems. Biol. Inspired Cogn. Archit. 13, 75–90 (2015)Google Scholar
  30. 30.
    Huet, N., Mariné, C.: Memory strategies and metamemory knowledge under memory demands change in waiters learners. Eur. J. Psychol. Educ. 12(1), 23–35 (1997)CrossRefGoogle Scholar
  31. 31.
    Cox, M., Oates, T., Perlis, D.: Toward an integrated metacognitive infrastructure. In: 2011 AAAI Fall Symposium, pp. 74–81 (2011)Google Scholar
  32. 32.
    Florez, M.A., Gomez, A.A., Caro, M.F.: Formal representation of introspective reasoning trace of a cognitive function in CARINA. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 620–628 (2018)Google Scholar
  33. 33.
    Goela, V., Pullara, D., Grafman, J.: A computational model of frontal lobe dysfunction: working memory and the Tower of Hanoi task. Cogn. Sci. 25(2), 287–313 (2001)CrossRefGoogle Scholar
  34. 34.
    Stewart, T.C. Eliasmith, C.: Neural Cognitive Modelling: A Biologically Constrained Spiking Neuron Model of the Tower of Hanoi Task The Tower of Hanoi (2011)Google Scholar
  35. 35.
    Gunzelmann, G., Anderson, J.R.: An ACT-R model of the evolution of strategy use and problem difficulty. In: Proceedings of the Fourth International Conference on Cognitive Modeling, pp. 109–114 (2001)Google Scholar
  36. 36.
    Jones, R.M., Lebiere, C., Crossman, J.A.: Comparing modeling idioms in ACT-R and Soar. In: Proceedings of the 8th International Conference on Cognitive Modeling, pp. 49–54 (2007)Google Scholar
  37. 37.
    Choi, D., Langley, P.: Evolution of the ICARUS cognitive architecture. Cogn. Syst. Res. 48, 25–38 (2018)CrossRefGoogle Scholar
  38. 38.
    Zdzisław, K., Michał, C.: Embodying intelligence in autonomous and robotic systems with the use of cognitive psychology and motivation theories. In: Advances in Data Analysis with Computational Intelligence Methods, pp. 335–352. Springer, Heidelberg (2018)Google Scholar
  39. 39.
    Wong, J.H., Kirschenbaum, S.S., Peters, S.: Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de CórdobaMonteríaColombia

Personalised recommendations