Automatic Categorization of Answers by Applying Supervised Classification Algorithms to the Analysis of Student Responses to a Series of Multiple Choice Questions

  • Lisset A. Neyra-RomeroEmail author
  • Oscar M. Cumbicus-Pineda
  • Basilio Sierra
  • Samanta Patricia Cueva-Carrion
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


In recent years there has been a growing interest in machine learning for the classification and categorization of documents, texts and questions. This allows automating processes that if done with the intervention of the human being could have a high cost in time, and opens the doors for its implementation with inclusive systems for students with physical disabilities. This article describes a research work that uses data mining techniques to obtain classifiers that automatically identify the correct answers expressed by students, and these answers are then associated with a question with different options that are part of the process of evaluating the knowledge acquired by students during their formative process. In view of these consideration, where each question had multiple feasible, where each question had multiple feasible options to be selected; however, each question had only one correct answer. The answers are given by the students of the Open and Distance Modality of the Universidad Tecnica Particular de Loja were transcribed, with a total of 12960 transcriptions of the verbal answers obtained from the students. The results obtained by means of different classification algorithms were presented, analyzed and compared; giving as a result that the neural networks and the support vector machine (SVM) were the best to classify with an average percentage of 97% of success.


Supervised classification Categorization of answers Supervised classification algorithms Data mining Artificial intelligence Machine learning 


  1. 1.
    Modalidad abierta y a distancia (2012).
  2. 2.
    Sistema de evaluación de los aprendizajes (2012).
  3. 3.
    Banco de preguntas de metodología de estudio (2013)Google Scholar
  4. 4.
  5. 5.
    Begusic, D., Pintar, D., Skopljanac-Macina, F., Vranic, M.: Annotating exam questions through automatic learning concept classification, pp. 176–180 (2018)Google Scholar
  6. 6.
    Bishop, C.M.: Pattern Recognition and Machine Learning (2006). 60(1), 78 (2012)Google Scholar
  7. 7.
    Ces, C.d.: Reglamento de regimen académico. Reglamento de Régimen Académico. Quito, Pichincha, Ecuador: Consejo de Educación Superior (2013)Google Scholar
  8. 8.
    Cumbicus-Pineda, O., Ordoñez-Ordoñez, P., Neyra-Romero, L., Figueroa-Diaz, R.: Automatic categorization of tweets on the political electoral theme using supervised classification algorithms. Commun. Comput. Inf. Sci. 895, 671–682 (2019)Google Scholar
  9. 9.
    Lorenzo, G.A.: La educación a distancia: de la teoría a la práctica. Cap. IV, Ariel (2001)Google Scholar
  10. 10.
    Méndez Martínez, J., Ruiz Méndez, R.: Evaluación del aprendizaje y tecnologías de información y comunicación (tic): De la precensialidad a la educación a distancia. Revsta de Evauación Educativa REVALUE 4, (2015)Google Scholar
  11. 11.
    de la Rosa, A.G.R.: Clasificacion de textos utilizando informaciøn inherente al conjunto a clasificar (2010)Google Scholar
  12. 12.
    Sangodiah, A., Muniandy, M., Heng, L.: Question classification using statistical approach: a complete review. J. Theor. Appl. Inf. Technol. 71(3), 386–395 (2015)Google Scholar
  13. 13.
    Sierra Araujo, B.: Aprendizaje automático: conceptos básicos y avanzados: aspectos prácticos utilizando el software weka (2006)Google Scholar
  14. 14.
    Silva, V., Bittencourt, I., Maldonado, J.: Automatic question classifiers: a systematic review. IEEE Trans. Learn. Technol. (2018) Google Scholar
  15. 15.
    Varguez-Moo, M., Uc-Cetina, V., Brito-Loeza, C.: Clasificación de documentos usando máquinas de vectores de apoyo. Abstraction and Application Magazine 6, (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Ciencias de la Computacion y ElectronicaUniversidad Tecnica Particular de LojaSan Cayetano AltoEcuador
  2. 2.Facultad de Energia, Carrera de Ingenieria en Sistemas y ComputacionUniversidad Nacional de LojaLa ArgeliaEcuador
  3. 3.Departamento de Ciencias de la Computacion e Inteligencia ArtificialUniversidad del Pais Vasco (UPV/EHU)Donostia-San SebastianSpain

Personalised recommendations