Semantic Representation Models of Sensor Data for Monitoring Agricultural Crops

  • Jorge GomezEmail author
  • Bayron Oviedo
  • Alexander Fernandez
  • Miguel Angel Zuniga Sanchez
  • Jose Teodoro Mejía Viteri
  • Angel Rafael Espana Leon
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


This paper shows the development semantic representation models of sensor data for monitoring agricultural crops. The purpose of this research article is explore the possible application of methodologies for ontologies in the process related to the agricultural environment and the information collected from the crop growth variables. therefore, improving interoporability becomes an important element in the treatment of large volumes of data, which will eventually help to make the right decisions and improve production in different types of crops.


Ontology models Internet of Things Precision agriculture 


  1. 1.
    Glova, J., Sabol, T., Vajda, V.: Business models for the Internet of Things environment. Procedia Econ. Finance 15, 1122–1129 (2014)CrossRefGoogle Scholar
  2. 2.
    Silega-Martínez, N., Macías-Hernández, D., Matos, Y., Febles, J.P.: Framework based on MDA and ontology for the representation and validation of components model. Revista Cubana de Ciencias Informáticas 8(2), 85–101 (2014)Google Scholar
  3. 3.
    Ganz, F., Barnaghi, P., Carrez, F.: Automated semantic knowledge acquisition from sensor data. IEEE Syst. J. 10(3), 1214–1225 (2016)CrossRefGoogle Scholar
  4. 4.
    Piedra, N., Suárez, J.P.: Hacia la Interoperabilidad Semántica para el Manejo Inteligente y Sostenible de Territorios de Alta Biodiversidad usando SmartLand-LD. Revista Ibérica de Sistemas e Tecnologias de Informaão (26), 104–121 (2018)CrossRefGoogle Scholar
  5. 5.
    Gómez, J., Oviedo, B., Zhuma, E.: Patient monitoring system based on Internet of Things. Procedia Comput. Sci. 83, 90–97 (2016)CrossRefGoogle Scholar
  6. 6.
    Gómez, J.E., Huete, J.F., Hernandez, V.L.: A contextualized system for supporting active learning. IEEE Trans. Learn. Technol. 9(2), 196–202 (2016)CrossRefGoogle Scholar
  7. 7.
    Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Huang, V.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. 17, 25–32 (2012). Science, services and agents on the World Wide WebCrossRefGoogle Scholar
  8. 8.
    Gordijn, J.: E-Business value modelling using the e3 -value ontology, pp. 101–111 (2004)CrossRefGoogle Scholar
  9. 9.
    Siquan, H., Wang, H., She, C., Wang, J.: CCTA 2010. Part I, IFIP AICT, vol. 344, pp. 131–137 (2011)Google Scholar
  10. 10.
    Perera, C., Zaslavsky, A., Christen, P., Compton, M., Georgakopoulos, D.: Context-aware sensor search, selection and ranking model for internet of things middleware. In: 2013 IEEE 14th International Conference on Mobile Data Management, vol. 1, pp. 314–322. IEEE, June 2013Google Scholar
  11. 11.
    Swartout, B., Patil, R., Knight, K., Russ, T.: Toward distributed use of large-scale ontologies. In: Proceedings of the Tenth Workshop on Knowledge Acquisition for Knowledge-Based Systems, pp. 138–148, November 1996Google Scholar
  12. 12.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering (1997)Google Scholar
  13. 13.
    Sure, Y., Staab, S., Studer, R.: On-to-knowledge methodology (OTKM). In: Handbook on Ontologies, pp. 117–132. Springer, Berlin (2004)CrossRefGoogle Scholar
  14. 14.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Ontology Engineering in a Networked World, pp. 9–34. Springer, Berlin (2012)Google Scholar
  15. 15.
    Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best practices and ontology engineering applied to Internet of Things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 412–417. IEEE, December 2015Google Scholar
  16. 16.
    Urbano-Molano, F.A.: Wireless sensor networks applied to optimization in precision agriculture for coffee crops in Colombia. J. Ciencia e Ingenieria 5(1), 46–52 (2013)Google Scholar
  17. 17.
    Wang, W., De, S., Toenjes, R., Reetz, E., Moessner, K.: A comprehensive ontology for knowledge representation in the Internet of Things. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1793–1798. IEEE, June 2012Google Scholar
  18. 18.
    De, S., Barnaghi, P., Bauer, M., Meissner, S.: Service modelling for the Internet of Things. In: 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 949–955. IEEE, September 2011Google Scholar
  19. 19.
    Dueñas, D.E.M., Gallegos, C.G.M., Acosta, R.A.M., Fernández, R.L., Urquiza, D.E.P., Saltos, M.B.G.: Theoretical foundations of web 2.0 for teaching in higher education. Revista de Ciencias Médicas Cienfuegos 15, 190–196 (2017)Google Scholar
  20. 20.
    Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: IoT-Lite: a lightweight semantic model for the Internet of Things. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 90–97. IEEE, July 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Ingenieria de SistemasUniversidad de CordobaMonteriaColombia
  2. 2.Departamento de InformaticaUniversidad Tecnica de BabahoyoBabahoyoEcuador
  3. 3.Universidad Tecnica Estatal de Quevedo EcuadorQuevedoEcuador

Personalised recommendations