Advertisement

Design, Simulation and Comparison of Controllers that Estimate an Hydric Balance in Strawberry Plantations in San Pedro

  • Raúl CarrascoEmail author
  • Carolina Lagos
  • Eduardo Viera
  • Leonardo Banguera
  • Ginno Millán
  • Manuel Vargas
  • Álvaro González
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

This work has a great relevance in modern agriculture, because of the nowadays problematic of the hydric resources at national and world level. Which evaluates different control technics able to estimate an hydric balance in strawberry plantations. Through the PID controllers with neural networks and diffuse logic. Getting better results with neural networks in Adequation Index, Settling Time, Overshoot and Stability, with which the obtained results were validated.

Keywords

Controllers Hydric balance PID Neural networks Fuzzy 

Notes

Acknowledgement

The authors acknowledge the funding for the investigation to FVF Ingeniería y Consultoría Ltda.

References

  1. 1.
    Adeyemi, O., Grove, I., Peets, S., Norton, T.: Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 9(353), 1–29 (2017).  https://doi.org/10.3390/su9030353CrossRefGoogle Scholar
  2. 2.
    Lozoya, C., Mendoza, C., Mejía, L., Quintana, J., Mendoza, G., Bustillos, M., Arras, O., Solís, L.: Model predictive control for closed-loop irrigation. IFAC Proc. Vol. 47(3), 4429–4434 (2014).  https://doi.org/10.3182/20140824-6-ZA-1003.02067CrossRefGoogle Scholar
  3. 3.
    Lozoya, C., Mendoza, C., Aguilar, A., Román, A., Castelló, R.: Sensor based model driven control strategy for precision irrigation. J. Sens. 2016(9784071), 12 (2016).  https://doi.org/10.1155/2016/9784071CrossRefGoogle Scholar
  4. 4.
    Delgoda, D., Malano, H., Saleem, S.K., Halgamuge, M.N.: Irrigation control based on model predictive control (MPC): formulation of theory and validation using weather forecast data and AQUACROP model. Environ. Model. Softw. 78, 40–53 (2016).  https://doi.org/10.1016/j.envsoft.2015.12.012CrossRefGoogle Scholar
  5. 5.
    Saleem, S.K., Delgoda, D., Ooi, S.K., Dassanayake, K.B., Liu, L., Halgamuge, M., Malano, H.: Model predictive control for real-time irrigation scheduling. IFAC Proc. Vol. 46(18), 299–304 (2013).  https://doi.org/10.3182/20130828-2-SF-3019.00062CrossRefGoogle Scholar
  6. 6.
    González, R., Fernández, I., Martin, M., Rodríguez, J., Camacho, E., Montesinos, P.: Multiplatform application for precision irrigation scheduling in strawberries. Agric. Water Manag. 183, 194–201 (2017).  https://doi.org/10.1016/j.agwat.2016.07.017CrossRefGoogle Scholar
  7. 7.
    Merchán, D., Causapé, J., Abrahão, R., García-Garizábal, I.: Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. I: water balances and irrigation performance. Agric. Water Manag. 158, 277–287 (2015).  https://doi.org/10.1016/j.agwat.2015.04.016CrossRefGoogle Scholar
  8. 8.
    Cisneros, E., Rey, R., Martínez, R., López, T., González, F.: Evapotranspiración y coeficientes de cultivo para el cafeto en la provincia de Pinar del Río. Revista Ciencias Técnicas Agropecuarias 24(2), 23–30 (2015)Google Scholar
  9. 9.
    Karasekreter, N., Başçiftçi, F., Fidan, U.: A new suggestion for an irrigation schedule with an artificial neural network. J. Exp. Theor. Artif. Intell. 25(1), 93–104 (2013).  https://doi.org/10.1080/0952813X.2012.680071CrossRefGoogle Scholar
  10. 10.
    Mousa, A.K., Croock, M.S., Abdullah, M.N.: Fuzzy based decision support model for irrigation system management. Int. J. Comput. Appl. 104(9), 14–20 (2014)Google Scholar
  11. 11.
    Prakashgoud, P., Desai, B.: Intelligent irrigation control system by employing wireless sensor NetworksPatil. Int. J. Comput. Appl. 79(11), 33–40 (2013)Google Scholar
  12. 12.
    Darzi-Naftchali, A., Mirlatifi, S., Shahnazari, A., Ejlali, F., Mahdian, M.: Effect of subsurface drainage on water balance and water table in poorly drained paddy fields. Agric. Water Manag. 130, 61–68 (2013).  https://doi.org/10.1016/j.agwat.2013.08.017CrossRefGoogle Scholar
  13. 13.
    Carrasco, R., Soto, I., Seguel, F., Osorio-valenzuela, L., Flores, C.: Water balance in plantations of strawberries, in the commune of San Pedro. In: Proceedings of 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2017, pp. 1–5. IEEE, Pucon (2017).  https://doi.org/10.1109/CHILECON.2017.8229715
  14. 14.
    Sánchez, S., Gambardella, M., Henriquez, J., Diaz, I.: First report of crown rot of strawberry caused by Macrophomina phaseolina in Chile. Plant Dis. 97(7), 996–996 (2013).  https://doi.org/10.1094/PDIS-12-12-1121-PDNCrossRefGoogle Scholar
  15. 15.
    Departamento de Recursos Hidricos, Facultad de Ingeniería Agrícola, U.d.C.: Diagnóstico de fuentes de agua no convencionales en el regadío inter-regional. Comisión Nacional de Riego, Ministerio de Agricultura, Gobierno de Chile 4, 154–246 (2010)Google Scholar
  16. 16.
    Instituto Nacional de Estadísticas - Chile: Censo Agropecuario y Forestal (2007)Google Scholar
  17. 17.
    Flores, J., Rodríguez, R.: Resultados y experiencias del proyecto: “Incorporación de tecnología WMS (Web Map Service) en sistemas de acumulación de agua para la producción de frutillas en las comunas de Alhué, María Pinto, Melipilla y San Pedro”. Technical report, Fundación para la Innovación agraria - (FIA), Ministerio de Agricultura, Santiago (2015)Google Scholar
  18. 18.
    Reckmann, O.: Demanda de agua por parte de los cultivos (chap. 2). In: Antúnez, A., Felmer, S. (eds.) Nodo tecnológico de riego en el secano región de O’Higgins. Fase II, pp. 51–72. Boletín INIA, num 190, Instituto de Investigaciones Agropecuarias, Santiago (2009)Google Scholar
  19. 19.
    Allen, R., Pereira, L., Raes, D., Smith, M.: Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Technical Report 9, FAO - Food and Agriculture Organization of the United Nations, Rome (1998)Google Scholar
  20. 20.
    Ooi, S.K., Mareels, I., Cooley, N., Dunn, G., Thoms, G.: A systems engineering approach to viticulture on-farm irrigation. IFAC Proc. Vol. 41(2), 9569–9574 (2008)CrossRefGoogle Scholar
  21. 21.
    Carrasco, R., Vargas, M., Alfaro, M., Soto, I., Fuertes, G.: Copper metal price using chaotic time series forecating. IEEE Lat. Am. Trans. 13(6), 1961–1965 (2015)CrossRefGoogle Scholar
  22. 22.
    Carrasco, R., Vargas, M., Soto, I., Fuentealba, D., Banguera, L., Fuertes, G.: Chaotic time series for copper’s price forecast: neural networks and the discovery of knowledge for big data. In: Liu, K., Nakata, K., Li, W., Baranauskas, C. (eds.) Digitalisation, Innovation, and Transformation, vol. 527, pp. 278–288. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94541-5_28CrossRefGoogle Scholar
  23. 23.
    Ogata, K.: Ingeniería de Control Moderna, vol. 53, 5th edn. Pearson Educación S.A., Madrid (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Ciencia y TecnologíaUniversidad Bernardo O’HigginsSantiagoChile
  2. 2.Pontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.Departamento de Ingeniería EléctricaUniversidad de Santiago de ChileSantiagoChile
  4. 4.Facultad de Ingeniería IndustrialUniversidad de GuayaquilGuayaquilEcuador
  5. 5.Facultad de Ingeniería y TecnologíaUniversidad San SebastiánSantiagoChile
  6. 6.Departamento de Ingeniería IndustrialUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations