Advertisement

Image Segmentation Techniques Application for the Diagnosis of Dental Caries

  • Alfonso A. Guijarro-RodríguezEmail author
  • Patricia M. Witt-Rodríguez
  • Lorenzo J. Cevallos-Torres
  • Segundo F. Contreras-Puco
  • Mirella C. Ortiz-Zambrano
  • Dennisse E. Torres-Martínez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

The diagnosis of a patient with caries is a process performed by oral health professionals, who after auscultation on the dental surfaces, determine the degree of affectation, following the visual inspection protocols, which present international standards. In recent years, there has been a growing interest in developing new techniques that allow the establishment of medical diagnoses, supported by information technologies, specifically in the early detection of diseases to apply the respective treatments. This work presents a method to determine the level of affectation of caries in the oral cavity, which applies a classifier that consists of 5 phases: capture, preprocessing, segmentation, extraction of characteristics and classification of objects. The proposed methodology considers a bank of images of dental pieces, all extracted from private dental clinics, as well as from the Integral Clinic CIAM II, which pertains to the Odontology Pilot School of the University of Guayaquil. For the classification, a multilayer perceptron artificial neural network was used, while for the validation of the work, 2030 images were analyzed, finding 80% success in the results, which were corroborated following the norm of caries classification and the criteria exposed by experts.

Keywords

Computer vision Classifier ICDAS Matlab Image processing Segmentation techniques 

References

  1. 1.
    Agarwal, R., et al.: A review paper on diagnosis of approximal and occlusal dental caries using digital processing of medical images. In: International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), pp. 383–385. IEEE (2016)Google Scholar
  2. 2.
    Ahmed, S., et al.: Identification and volume estimation of dental caries using CT image. In: 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 48–51. IEEE (2017)Google Scholar
  3. 3.
    Gálvez, S.: Operadores de detección de bordes. Universidad de Chile Facultad de Ciencias Físicas Y Matemáticas 31(144), 378–381 (2014)Google Scholar
  4. 4.
    González Sanz, Á.M., Aurora, B., Nieto, G., González Nieto, E.: Salud dental: relación entre la caries dental y el consumo de alimentos. Nutr. Hosp. 28(4), 64–71 (2013)Google Scholar
  5. 5.
    Gonzalez, M., Ballarin, V.: Segmentación de imágenes utilizando la transformada Watershed: obtención de marcadores mediante lógica difusa. IEEE Lat. Am. Trans. 6(2), 6 (2008)CrossRefGoogle Scholar
  6. 6.
    Hidalgo Gato-Fuentes, I., Duque de Estrada Riverón, J., Pérez Quiñones, J.A.: La caries dental: Algunos de los factores relacionados con su formación en niños. Revista Cubana de Estomatología 45(1) (2008)Google Scholar
  7. 7.
    Hu, Z., et al.: Teeth segmentation using dental CT data. In: 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 81–84. IEEE (2014)Google Scholar
  8. 8.
    Karlsson, L.: Caries detection methods based on changes in optical properties between healthy and carious tissue. Int. J. Dent. 2010, 9 (2010)CrossRefGoogle Scholar
  9. 9.
    Kim, H.-E., Kim, B.-I.: Early caries detection methods according to the depth of the lesion: an in vitro comparison. Photodiagn. Photodyn. Ther. 23, 176–180 (2018)CrossRefGoogle Scholar
  10. 10.
    Lancheros-Cuesta, D.J., Suarez, D.R., Arias, J.L.R.: Tele-dentistry information system for promotion, prevention, diagnosis and treatment of dental caries. In: 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–7. IEEE (2016)Google Scholar
  11. 11.
    Luyo, A.G.P.: ¿ Es la caries dental una enfermedad infecciosa y transmisible? Re-vista Estomatológica Herediana 19(2), 118–124 (2009)CrossRefGoogle Scholar
  12. 12.
    Marín: Desarrollo de un sistema de ayuda a la decisión para tratamientos odonto-lógicos con imágenes digitales, p. 33. Universidad de Málaga – España (2015)Google Scholar
  13. 13.
    Molina, Á.V.: Segmentación de los pulmones usando maquinas de soporte vectorial en imágenes de tomografía computarizadaGoogle Scholar
  14. 14.
    Núñez, D.P., García Bacallao, L.: Bioquímica de la caries dental. Revista Habanera de Ciencias Médicas 9(2), 156–166 (2010)Google Scholar
  15. 15.
    Peláez, J.I., et al.: Un modelo de detección automática de bordes en imágenes derma-toscópicas. In: CISCI 2016-Decima Quinta Conferencia Iberoamericana en Sistemas, Cibernética e Informática, Décimo Tercer Simposium Iberoamericano en Educación, Ciber-nética e Informática, SIECI 2016-Memorias (2016)Google Scholar
  16. 16.
    Peláez, J.I., Vaccaro, G., Guijarro, A.: Un Modelo para la Categoriza-ción de Hormigones Mediante Procesamiento Digital de Imágenes. In: 19th World Multi-Conference on Systemics, Cybernetics-CISCI 2015 (2015)Google Scholar
  17. 17.
    Pinto-González, S.F., et al.: Validación mediante el Método PPI de un Algoritmo Computacional para la medición automática del área de afectación por Sigatoka ne-gra en imágenes de hojas de plátano del Departamento del Meta, Colombia, vol. 14, no. 1, pp. 24–28 (2017)Google Scholar
  18. 18.
    Pretty, I.A.: Caries detection and diagnosis: novel technologies. J. Dent. 34(10), 727–739 (2006)CrossRefGoogle Scholar
  19. 19.
    Riveros Guevara, A., Salas López, C.N., Solaque Guzmán, L.: Proximación a la navegación autónoma de una plataforma móvil, mediante visión este-reoscópica artificial. Ciencia E Ingeniería Neogranadina 22(2), 111–129 (2013)CrossRefGoogle Scholar
  20. 20.
    Shokouhi, E.B., et al.: Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography. Biomed. Opt. Express 9(9), 3983–3997 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alfonso A. Guijarro-Rodríguez
    • 1
    Email author
  • Patricia M. Witt-Rodríguez
    • 2
  • Lorenzo J. Cevallos-Torres
    • 1
  • Segundo F. Contreras-Puco
    • 1
  • Mirella C. Ortiz-Zambrano
    • 1
  • Dennisse E. Torres-Martínez
    • 3
  1. 1.Faculty of Mathematical and Physical SciencesUniversity of GuayaquilGuayaquilEcuador
  2. 2.Germany Faculty of DentistryUniversity of GuayaquilGuayaquilEcuador
  3. 3.Superior Technological Institute Vicente RocafuerteGuayaquilEcuador

Personalised recommendations