Accessible eHealth System for Heart Rate Estimation

  • Víctor SantosEmail author
  • María Trujillo
  • Karla Portilla
  • Andrés Rosales
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


Nowadays, increase of medical infrastructure in Ecuador implies high monetary cost to acquire new medical technologies. Population longevity and the substantial increase in patients with chronic diseases (mostly cardiac nature) force them to maintain frequent contact with the medical system to make a continuous monitoring of their pathologies. In order to reduce the concurrence of people towards medical centers for a primary diagnosis about the state of their cardiovascular system an eHealth system to monitoring heart rate is proposed. This system is focused on the estimation of this vital sign, incorporates diagnostic assistance service and support for continuous care, using computational algorithms that allow, through the application of mathematical techniques for the blind source separation and diagonalization of own matrices, all of the above is subsequently synthesized within a reduced plate computer using as peripheral devices a webcam and an smartphone; to finally be compared in a set of 100 people using two commercial medical devices (pulse oximeter and digital tensiometer), obtaining satisfactory results in around 70% of the samples. An early diagnosis and a more effective treatment are important tools for planning and optimization of resources. The proposed system will benefit most of the population in several aspects, including people with limited access into the health care system through accessible technology aiming to eliminate geographical dependence using wide area network links.


eHealth Heart rate Hospital care Signals decorrelation WAN links 


  1. 1.
    Carrión, P., Ródenas, J., Rieta, J., Sánchez, C.: Telemedicina: Ingeniería Biomédica, 6th edn. Universidad de Castilla, La Mancha (2009)Google Scholar
  2. 2.
    Marimón, S.: La sanidad en la sociedad de la información: sistemas y tecnologías de la in- formación para la gestión y la reforma de los servicios de salud, 1st edn. Díaz de Santos, Madrid (1999)Google Scholar
  3. 3.
    Della Mea, J.: What is e-health(2): the death of telemedicine. J. Med. Internet Res. 3(2), e22 (2001)CrossRefGoogle Scholar
  4. 4.
    ISAGS UNASUR. Accessed 21 Mar 2019
  5. 5.
  6. 6.
    Lucio, R., Villacrés, N., Henríquez, R.: Sistema de salud de Ecuador. Journal 53(2), 177–187 (2011)Google Scholar
  7. 7.
    Jinich, H., Lifshitz, A., García, J., Ramiro, M.: Síntomas y signos cardinales de las enfermedades, 6th edn. Manual Moderno, México (2013)Google Scholar
  8. 8.
    López, M., De la Torre, I., Herreros, J., Cabo, J.: Mejora de la calidad asistencial mediante la telemedicina y teleasistencia, 1st edn. Díaz de Santos, Madrid (2014)Google Scholar
  9. 9.
    Portilla, K., Santos, V., Trujillo, M., Rosales, A.: Non-invasive heart rate monitor applying independent component analysis in videos. In: Luján, S., Moscoso, O. (eds.) International Conference on Information Systems and Computer Science 2017, INCISCOS, pp. 121–127. IEEE, Quito (2017)Google Scholar
  10. 10.
    Ziehe, A.: Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing. Ph.D. dissertation. Postdam University, Berlin (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Víctor Santos
    • 1
    • 2
    Email author
  • María Trujillo
    • 1
  • Karla Portilla
    • 1
  • Andrés Rosales
    • 1
  1. 1.Departamento de Automatización y Control IndustrialEscuela Politécnica NacionalQuitoEcuador
  2. 2.Departamento de FísicaEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations