An Algorithm Oriented to the Classification of Quinoa Grains by Color from Digital Images

  • Moisés Quispe
  • José Arroyo
  • Guillermo KemperEmail author
  • Jonell Soto
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


The present work proposes an image processing algorithm oriented to identify the coloration of the quinoa grains that make up the different samples obtained from the production of a crop field. The objective is to perform quality control of production based on the statistics of grain coloration, which is currently done manually based on subjective visual perception. This generates results that totally depend on the abilities and the particular criteria of each observer, generating considerable errors in the identification of the colors and tonalities. The problem is further complicated by the nonexistence, at present, of a pattern or standard of coloration of quinoa grains that specifically defines a referential color map. In this sense, through this work, an algorithm is proposed oriented to classify the grains of the acquired samples by their color via digital images and provide corresponding statistics for the quality control of the production. The algorithm uses the color models RGB, HSV and YCbCr, thresholding, segmentation by binary masks, erosion, connectivity, labeling and sequential classification based on 8 colors established by agronomists. The obtained results showed a performance of the proposed algorithm of 91.25% in relation to the average success rate.


Image processing Quinoa Color classification 


  1. 1.
    Marca, S., Chaucha, W., Quispe, J., Mamani, W.:Comportamiento actual de los agentes de la cadena productiva de quinua en la región puno. Gobierno Regional Puno, Dirección Regional Agraria Puno, Puno, Peru (2011)Google Scholar
  2. 2.
    Montalvo, J.: Procesamiento de imágenes digitales utilizando descriptores de color para la identificación y clasificación de diversos tipos de semilla de quinua. Tesis de Titulación en Ingeniería de Sistemas, Universidad Señor de Sipán, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel, Peru (2017)Google Scholar
  3. 3.
    Montalvo, J.C., Tuesta, V.A., Arcila, J.C., Mejía, C.: Clasificación automática de tipos de semilla de quinua a través de descriptores de color. Revista Científica de Ingeniería. Ciencia Tecnología e Innovación 4(2), 1–6 (2017)Google Scholar
  4. 4.
    Sharma, D., Sawant, S.: Grain quality detection by using image processing for public distribution. In: International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1118–1122. IEEE (2017)Google Scholar
  5. 5.
    Pabamalie, L.A.I., Premaratne, H.L.: A grain quality classification system. In: International Conference on Information Society, pp. 57–61. IEEE, London (2010)Google Scholar
  6. 6.
    Kiratiratanapruk, K., Sinthupinyo, W.: Color and texture for corn seed classification by machine vision. In: International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS). IEEE, Chiang Mai (2011)Google Scholar
  7. 7.
    Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, New Jersey (2002)Google Scholar
  8. 8.
    Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing: A Practical Approach with Examples in MATLAB, 1st edn. Wiley-Blackwell, Chichester (2011)Google Scholar
  9. 9.
    International Telecommunication Union: ITU-R RecommendationBT.601–7: Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Peruana de Ciencias AplicadasSantiago de Surco, LimaPeru
  2. 2.Instituto Nacional de Innovación AgrariaLa MolinaPeru

Personalised recommendations