Advertisement

Architecture for Demand Prediction for Production Optimization: A Case Study

  • Inabel Karina Mazón Quinde
  • Sang Guun YooEmail author
  • Rubén Arroyo
  • Geovanny Raura
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

A proper product demand projection is an aspect that can be decisive for the competitiveness and survival of companies. However, in most of cases, this process is carried out based on empirical knowledge of the marketing personnel generating a high level of error in the results. To solve this problem, this paper presents a production planning architecture based on demand analysis by using business intelligence architecture and analytical algorithms. The proposed architecture has been validated by means of a case study which results indicate that the effectiveness increases from 25% to more than 85%. We believe that the proposed model may be applicable in other entities.

Keywords

Production planning Consumer demand Advanced analytics Manufacturing company 

References

  1. 1.
    SIAG Consulting: Qué es exactamente el famoso cuadrante mágico de Gartner? Solo pienso en TIC - Consultoría tecnológica, 07 November 2016. http://www.solopiensoentic.com/cuadrante-magico-de-gartner/. Accessed 18 Mar 2018
  2. 2.
    Piatetsky, G.: Gainers and losers in gartner 2018 magic quadrant for data science and machine learning platforms, Feburary 2018. https://www.kdnuggets.com/2018/02/gartner-2018-mq-data-science-machine-learning-changes.html. Accessed 18 Mar 2018
  3. 3.
    Piatetsky-Shapiro, G.: Acerca de KDnuggets, analytics, big data, data mining y data science leader (2018). https://www.kdnuggets.com/about/index.html. Accessed 20 Mar 2018
  4. 4.
    Gregory Piatetsky, Kd.: Algoritmos principales y métodos utilizados por los científicos de datos, September (2016). https://www.kdnuggets.com/2016/09/poll-algorithms-used-data-scientists.html?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3Bhrjw5C3BQvOXA9P0xAjKdw%3D%3D. Accessed 20 Mar 2018
  5. 5.
    Gartner: Magic quadrant for data science and machine-learning platforms, Feburary 2018. https://www.gartner.com/doc/3860063/magic-quadrant-data-science-machinelearning. Accessed 18 Mar 2018
  6. 6.
    Wu, L., Yan, J.Y., Fan, Y.J.: Data mining algorithms and statistical analysis for sales data forecast. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization, pp. 577–581 (2012)Google Scholar
  7. 7.
    Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)CrossRefGoogle Scholar
  8. 8.
    Tanwar, H., Kakkar, M.: Performance comparison and future estimation of time series data using predictive data mining techniques. In: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), pp. 9–12 (2017)Google Scholar
  9. 9.
    Juang, W.-C., Huang, S.-J., Huang, F.-D., Cheng, P.-W., Wann, S.-R.: Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in Southern Taiwan. BMJ Open 7(11), e018628 (2017)CrossRefGoogle Scholar
  10. 10.
    Kaur, P., Singh, M., Josan, G.S.: Classification and prediction based data mining algorithms to predict slow learners in education sector. Procedia Comput. Sci. 57, 500–508 (2015)CrossRefGoogle Scholar
  11. 11.
    Saranya, S., Ayyappan, R., Kumar, N.: Student progress analysis and educational institutional growth prognosis using data mining. J. Eng. Sci. Res. Technol. 3, 1982–1987 (2014)Google Scholar
  12. 12.
    Alvarado, J., Jiménez, A.: La predicción del rendimiento académico: regresión lineal versus regresión logística. Univ. Complut. Madr. 12, 5 (2010)Google Scholar
  13. 13.
    Francis, H., Kusiak, A.: Prediction of engine demand with a data-driven approach. Procedia Comput. Sci. 103, 28–35 (2017)CrossRefGoogle Scholar
  14. 14.
    Alon, I., Qi, M., Sadowski, R.J.: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. J. Retail. Consum. Serv. 8(3), 147–156 (2001)CrossRefGoogle Scholar
  15. 15.
    Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50(3), 559–569 (2011)CrossRefGoogle Scholar
  16. 16.
    Choudhury, A., Jones, J.: Crop yield prediction using time series models. J. Econ. Econ. Educ. Res. 15, 53 (2014)Google Scholar
  17. 17.
    Contreras Juárez, A., Atziry Zuñiga, C., Martínez Flores, J.L., Sánchez Partida, D.: Análisis de series de tiempo en el pronóstico de la demanda de almacenamiento de productos perecederos. Estud. Gerenciales 32(141), 387–396 (2016)CrossRefGoogle Scholar
  18. 18.
    Quintana, M.J.G., Jiménez, S.A.M.: Modelos de series de tiempo aplicados a los expedientes de la Comisión de Derechos Humanos del Distrito Federal. Econ. Inf. 398, 89–99 (2016)Google Scholar
  19. 19.
    López, J.A., López, M.A.A.: Modelo de predicción electoral: el caso de la elección municipal 2015 de León de los Aldama, Guanajuato1. Estud. Políticos 35, 87–101 (2015)CrossRefGoogle Scholar
  20. 20.
    Alteryx: About Alteryx | Alteryx (2018). https://www.alteryx.com/about-us. Accessed 25 Jan 2018
  21. 21.
    Gartner: Tableau lidera cuadrante mágico Gartner de BI 2018. Microsystem, 28 February 2018. https://www.microsystem.cl/tableau-lidera-gartner-bi-2018/. Accessed 11 Mar 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Ciencias de la ComputaciónUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations