Acoustic Fluidization During Impact Crater’s Formation

  • Boris IvanovEmail author
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


The explanation of impact crater morphology and, possibly, rock avalanche’s long runout demands a temporary dry friction reduction. We review main assumptions for one of main models proposed to explain this phenomenon, namely the acoustic fluidization (AF) model. The governing model parameter is the decay time for internal oscillations assumed to be generated in fragmented rock bodies under high strain rates, typical for growing impact craters and moving rock avalanches. Using numerous published results for impact crater on various planetary bodies with different gravity acceleration, we try to improve our understanding of some critical AF model issues.


Rock friction Impact cratering Acoustic fluidization 



The work is supported with the Russian Academy of Science project “Origin and evolution of Space studied with telescopic observations and space missions” (the former Program 28 and Program 12). The author thanks an anonymous reviewer who’s comments sufficiently improved the paper.


  1. 1.
    Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111(B5), B05311: 1–29 (2006)CrossRefGoogle Scholar
  2. 2.
    Jop, P., Forterre, Y., Pouliquen, O: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Melosh, H.J.: Crater modification by gravity—a mechanical analysis of slumping. In: Pepin, R.O., Merrill, R.B., Roddy, D.J. (eds.) Impact and Explosion Cratering: Planetary and Terrestrial Implications, pp. 1245–1260. Pergamon Press, NY (1977)Google Scholar
  4. 4.
    McKinnon, W.B.: An investigation into the role of plastic failure in crater modification. In: Lunar and Planetary Science Conference 9th (Geochimica et Cosmochimica Acta, Supplement 10), pp. 3965–3973 (1978)Google Scholar
  5. 5.
    Melosh, H.J.: Acoustic fluidization—a new geologic process. J. Geophys. Res. 84(B13), 7513–7520 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Melosh, H.J., Ivanov, B.A.: Impact crater collapse. Annual Rev. Earth Plant. Sci. 27, 385–415 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Ferriere, L., Koeberl, C., Ivanov, B.A., Reimold, W.U.: Shock metamorphism of Bosumtwi impact crater rocks, shock attenuation, and uplift formation. Science 322(5908), 1678–1681 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Ivanov, B.A., Stöffler, D.: The Steinheim impact crater, Germany: modeling of a complex crater with central Uplift. In: 36th Annual Lunar and Planetary Science Conference. Abs. #1443. LPI, Houston, TX (2005)Google Scholar
  9. 9.
    Ivanov, B.A.: Deep drilling results and numerical modeling: Puchezh-Katunki impact crater, Russia. In: Proceedings of Lunar and Planetary Science Conference, Abs. #1286. Lunar and Planetary Institute, Houston, TX (2002)Google Scholar
  10. 10.
    Collins, G.S., Kenkmann, T., Osinski, G.R., Wunnemann, K.: Mid-sized complex crater formation in mixed crystalline-sedimentary targets: Insight from modeling and observation. Meteorit. Planet. Sci. 43(12), 1955–1977 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Rae, A.S.P., Collins, G.S., Grieve, R.A.F., Osinski, G.R., Morgan, J.V.: Complex crater formation: insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure. Meteorit. Planet. Sci. 52(7), 1330–1350 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Ivanov, B.A.: Numerical modeling of the largest terrestrial meteorite craters. Sol. Syst. Res. 39(5), 381–409 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G.S., Coolen, M.J.L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D.A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G.R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D.R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K.E., Zylberman, W.: The formation of peak rings in large impact craters. Science 354(6314), 878–882 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Melosh, H.J: Impact Cratering—A Geologic Process, 245 pp. Oxford, New York (1989)Google Scholar
  15. 15.
    Collins, G.S., Melosh, H.J., Ivanov, B.A.: Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39(2), 217–231 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Ivanov, B.: Geologic Effects of Large Terrestrial Impact Crater Formation. In: Adushkin, V.V., Nemchinov, I.V. (eds.) Catastrophic Events Caused by Cosmic Objects, pp. 163–205. Springer, Berlin (2008)Google Scholar
  17. 17.
    Silber, E.A., Osinski, G.R., Johnson, B.C., Grieve, R.A.F.: Effect of impact velocity and acoustic fluidization on the simple-to-complex transition of lunar craters. J. Geophys. Res. Planets 122(5), 800–821 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Ivanov, B.A., Melosh, H.J., Pierazzo, E.: Basin-forming impacts: Reconnaissance modeling. In: Gibson, R.L., Reimold, W.U. (eds.) GSA Special Papers 465, pp. 29–49. Geological Society of America, Boulder, Colorado, USA (2010)Google Scholar
  19. 19.
    Kring, D.A., Kramer, G.Y., Collins, G.S., Potter, R.W.K., Chandnani, M.: Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nat. Commun. 7 (Article #13161), 1–10 (2016)Google Scholar
  20. 20.
    Parker, M.V.K., Zegers, T., Kneissl, T., Ivanov, B., Foing, B., Neukum, G.: 3D structure of the Gusev crater region. Earth Plan. Sci. Lett. 294(3–4), 411–423 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Schenk, P., et al.: The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Hiesinger, H., Marchi, S., Schmedemann, N., Schenk, P., Pasckert, J. H., Neesemann, A., O’Brien, D. P., Kneissl, T., Ermakov, A.I., Fu, R.R., Bland, M.T., Nathues, A., Platz, T., Williams, D.A., Jaumann, R., Castillo-Rogez, J.C., Ruesch, O., Schmidt, B., Park, R.S., Preusker, F., Buczkowski, D.L., Russell, C.T., Raymond, C.A.: Cratering on ceres: implications for its crust and evolution. Science 353(6303), aaf4759, 1–8 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Kramer, G.Y., Schenk, P.: Morphologies of Fresh Craters, Lunar Analogs, and the Simple-Complex Transition on Vesta, in 46th Lunar and Planetary Science Conference, Abs. #2571. LPI, Woodland, TX (2015)Google Scholar
  24. 24.
    Ivanov, B.A., Melosh, H.J.: Two-dimensional numerical modeling of the Rheasilvia impact formation. J. Geophys. Res. Planets 118(7), 1545–1557 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Wünnemann, K., Ivanov, B.A.: Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planet. Space Sci. 51(13), 831–845 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Melosh, H.J.: The physics of very large landslides. Acta Mech. 64(1), 89–99 (1986)CrossRefGoogle Scholar
  27. 27.
    Ivanov, B.A., Artemieva, N.A.: Numerical modeling of the formation of large impact craters. In: Koeberl C., MacLeod K. (eds.) Catastrophic Events and Mass Extinctions: Impact and Beyond, Geological Society of America Special Papers 356, pp. 619–630, GSA, Boulder, Colorado (2002)Google Scholar
  28. 28.
    Croft, S.K.: The scaling of complex craters. J. Geophys. Res. 90, C828–C842 (1985)CrossRefGoogle Scholar
  29. 29.
    Werner, S.C., Ivanov, B.A.: Exogenic dynamics, cratering, and surface ages (Chapter 10.10). In: Schubert, G. (ed.) Treatise on Geophysics, 2nd edn, pp. 327–365. Elsevier, Oxford (2015)CrossRefGoogle Scholar
  30. 30.
    Pike, R. J.: Control of crater morphology by gravity and target type—mars, earth, moon. In: Proceedings of the Lunar and Planetary Science Conference 11th, pp. 2159–2189. Pergamon Press, New York (1980)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Dynamics of Geospheres, RASMoscowRussia

Personalised recommendations