Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter pp 13-63 | Cite as
Generalization of Bloch’s Theorem to Systems with Boundary
Abstract
We formulate and prove a generalization of Bloch’s theorem to finite-range lattice systems of independent fermions, in which translation symmetry is broken solely due to arbitrary boundary conditions. This generalization, which is made possible mainly by allowing the crystal momentum to take complex values, provides exact analytic expressions for all energy eigenvalues and eigenvectors of the system Hamiltonian. A remarkable consequence of this theorem is the predicted emergence of localized excitations, whose amplitude decays in space exponentially with a power-law prefactor. We leverage this generalization of Bloch’s theorem to design an algorithm for computing energy eigenvalues and eigenstates of systems under consideration, and also to construct an indicator of bulk-boundary correspondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.
Keywords
Topological insulators Topological superconductors Symmetry-protected topological phases Bulk-boundary correspondence Bloch’s theorem Boundary conditionsReferences
- 1.A.M. Tanhayi, G. Ortiz, B. Seradjeh, On the role of self-adjointness in the continuum formulation of topological quantum phases. Amer. J. Phy. 84, 858 (2016).ADSCrossRefGoogle Scholar
- 2.S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a super-conductor. Science 346, 602–607 (2014). https://science.sciencemag.org/content/346/6209/602 ADSCrossRefGoogle Scholar
- 3.W. DeGottardi, M. Thakurathi, S. Vishveshwara, D. Sen, Majorana fermions in superconducting wires: effects of long-range hopping, broken time-reversal symmetry, and potential land-scapes. Phys. Rev. B 88, 165111 (2013). https://link.aps.org/doi/10.1103/PhysRevB.88.165111 ADSCrossRefGoogle Scholar
- 4.G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, C. Beenakker, Many-body characterization of particle-conserving topological superfluids. Phys. Rev. Lett. 113, 267002 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.267002 ADSCrossRefGoogle Scholar
- 5.D. Vodola, L. Lepori, E. Ercolessi, A.V. Gorshkov, G. Pupillo, Kitaev chains with long-range pairing. Phys. Rev. Lett. 113, 156402 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.156402 ADSCrossRefGoogle Scholar
- 6.F. Pientka, L.I. Glazman, F. von Oppen, Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013). https://link.aps.org/doi/10.1103/PhysRevB.88.155420 ADSCrossRefGoogle Scholar
- 7.N. Read, Compactly supported Wannier functions and algebraic k-theory. Phys. Rev. B 95, 115309 (2017). https://link.aps.org/doi/10.1103/PhysRevB.95.115309 ADSCrossRefGoogle Scholar
- 8.A.Y. Kitaev, Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001). https://doi.org/10.1070%2F1063-7869%2F44%2F10s%2Fs29 ADSCrossRefGoogle Scholar
- 9.D.H. Lee, J.D. Joannopoulos, Simple scheme for surface-band calculations. I. Phys. Rev. B 23, 4988–4996 (1981). https://link.aps.org/doi/10.1103/PhysRevB.23.4988 ADSCrossRefGoogle Scholar
- 10.J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)Google Scholar
- 11.N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Holt, Rinehart and Winston, New York, 1976)Google Scholar
- 12.H.J. Mikeska, W. Pesch, Boundary effects on static spin correlation functions in the isotropicx—y chain at zero temperature. Zeitschrift für Physik B Condens. Matter 26, 351–353 (1977). https://doi.org/10.1007/BF01570745 ADSGoogle Scholar
- 13.I.E. Tamm, On the possible bound states of electrons on a crystal surface. Physikalische Zeitschrift der Sowjetunion 1, 733 (1932)Google Scholar
- 14.W. Shockley, On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939). https://link.aps.org/doi/10.1103/PhysRev.56.317 ADSzbMATHCrossRefGoogle Scholar
- 15.G. Seifert, Tight-binding density functional theory: an approximate KohnSham DFT scheme. J. Phys. Chem. A 111, PMID: 17439198, 5609–5613 (2007). https://doi.org/10.1021/jp069056r ADSCrossRefGoogle Scholar
- 16.L. Jiang, T. Kitagawa, J. Alicea, A.R. Akhmerov, D. Pekker, G. Refael, J.I. Cirac, E. Demler, M.D. Lukin, P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011). https://link.aps.org/doi/10.1103/PhysRevLett.106.220402 ADSCrossRefGoogle Scholar
- 17.B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)zbMATHCrossRefGoogle Scholar
- 18.I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials (Academic, New York, 1982)zbMATHGoogle Scholar
- 19.A. Alase, E. Cobanera, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: theory. Phys. Rev. B 96, 195133 (2017). https://link.aps.org/doi/10.1103/PhysRevB.96.195133 CrossRefGoogle Scholar
- 20.V. Dwivedi, V. Chua, Of bulk and boundaries: generalized transfer matrices for tight-binding models. Phys. Rev. B 93, 134304 (2016). https://link.aps.org/doi/10.1103/PhysRevB.93.134304 ADSCrossRefGoogle Scholar
- 21.F. Bechstedt, Principles of Surface Physics, 1st edn. (Springer, Berlin, 2012)Google Scholar
- 22.W.F. Trench, A note on computing eigenvalues of banded Hermitian Toeplitz matrices. SIAM J. Sci. Comput. 14, 248 (1993). https://doi.org/10.1137/0914015 MathSciNetzbMATHCrossRefGoogle Scholar
- 23.F. De Terán, F.M. Dopico, P. Van Dooren, Matrix polynomials with completely prescribed eigenstructure. SIAM J. Matrix Anal. Appl. 36, 302 (2015). https://doi.org/10.1137/140964138 MathSciNetzbMATHCrossRefGoogle Scholar
- 24.J.C. Avila, H. Schulz-Baldes, C. Villegas-Blas, Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 137–170 (2013). https://doi.org/10.1007/s11040-012-9123-9 MathSciNetzbMATHCrossRefGoogle Scholar
- 25.L.E. Ballentine, Quantum Mechanics: A Modern Development, 2nd edn. (World Scientific Publishing Company, Singapore, 2014)zbMATHCrossRefGoogle Scholar
- 26.A. Quelle, E. Cobanera, C.M. Smith, Thermodynamic signatures of edge states in topological insulators. Phys. Rev. B 94, 075133 (2016). https://link.aps.org/doi/10.1103/PhysRevB.94.075133 ADSCrossRefGoogle Scholar
- 27.M. Püschel, J.M. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32, 1280–1316 (2003). https://doi.org/10.1137/S009753970139272X MathSciNetzbMATHCrossRefGoogle Scholar
- 28.G. Ortiz, R. Somma, J. Dukelsky, S. Rombouts, Exactly-solvable models derived from a generalized Gaudin algebra. Nucl. Phys. B 707, 421–457 (2005). https://doi.org/10.1016/j.nuclphysb.2004.11.008 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 29.E. Cobanera, A. Alase, G. Ortiz, L. Viola, Exact solution of corner-modified banded block-Toeplitz eigensystems. J. Phys. A: Math. Theor. 50, 195204 (2017). https://doi.org/10.1088/1751-8121/aa6046 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 30.I.M. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Springer, Berlin, 2008)zbMATHGoogle Scholar
- 31.R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
- 32.J. Demmel, I. Dumitriu, O. Holtz, Fast linear algebra is stable. Numer. Math. 108, 59–91 (2007). https://doi.org/10.1007/s00211-007-0114-x MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993). https://link.aps.org/doi/10.1103/PhysRevLett.71.3697 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 34.Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851 (1993). https://link.aps.org/doi/10.1103/PhysRevB.48.11851 ADSCrossRefGoogle Scholar
- 35.R.S.K. Mong, V. Shivamoggi, Edge states and the bulk-boundary correspondence in Dirac Hamiltonians. Phys. Rev. B 83, 125109 (2011). https://link.aps.org/doi/10.1103/PhysRevB.83.125109 ADSCrossRefGoogle Scholar
- 36.P. Delplace, D. Ullmo, G. Montambaux, Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011). https://link.aps.org/doi/10.1103/PhysRevB.84.195452 ADSCrossRefGoogle Scholar
- 37.S. Mao, Y. Kuramoto, K.-I. Imura, A. Yamakage, Analytic theory of edge modes in topological insulators. J. Phys. Soc. Jpn. 79, 124709 (2010). https://journals.jps.jp/doi/pdf/10.1143/JPSJ.79.124709 ADSCrossRefGoogle Scholar
- 38.S.S. Hegde, S. Vishveshwara, Majorana wave-function oscillations, fermion parity switches, and disorder in Kitaev chains. Phys. Rev. B 94, 115166 (2016). https://link.aps.org/doi/10.1103/PhysRevB.94.115166 ADSCrossRefGoogle Scholar
- 39.G. Biczó, O. Fromm, J. Kouteck, A. Lee, Inversion-free formulation of the direct recursion (transfer matrix) method. Chem. phys. 98, 51–58 (1985). https://doi.org/10.1016/0301-0104(85)80093-8 ADSCrossRefGoogle Scholar
- 40.T.B. Boykin, Generalized eigenproblem method for surface and interface states: the complex bands of GaAs and AlAs. Phys. Rev. B 54, 8107 (1996). https://link.aps.org/doi/10.1103/PhysRevB.54.8107 ADSCrossRefGoogle Scholar
- 41.L.G. Molinari, Identities and exponential bounds for transfer matrices. J. Phys. A: Math. Theor. 46, 254004 (2013). https://doi.org/10.1088/1751-8113/46/25/254004 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 42.E. Cobanera, A. Alase, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: interfaces and topological surface band structure. Phys. Rev. B 98, 245423 (2018). https://link.aps.org/doi/10.1103/PhysRevB.98.245423 ADSCrossRefGoogle Scholar