Generalization of Bloch’s Theorem to Systems with Boundary

  • Abhijeet Alase
Part of the Springer Theses book series (Springer Theses)


We formulate and prove a generalization of Bloch’s theorem to finite-range lattice systems of independent fermions, in which translation symmetry is broken solely due to arbitrary boundary conditions. This generalization, which is made possible mainly by allowing the crystal momentum to take complex values, provides exact analytic expressions for all energy eigenvalues and eigenvectors of the system Hamiltonian. A remarkable consequence of this theorem is the predicted emergence of localized excitations, whose amplitude decays in space exponentially with a power-law prefactor. We leverage this generalization of Bloch’s theorem to design an algorithm for computing energy eigenvalues and eigenstates of systems under consideration, and also to construct an indicator of bulk-boundary correspondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.


Topological insulators Topological superconductors Symmetry-protected topological phases Bulk-boundary correspondence Bloch’s theorem Boundary conditions 


  1. 1.
    A.M. Tanhayi, G. Ortiz, B. Seradjeh, On the role of self-adjointness in the continuum formulation of topological quantum phases. Amer. J. Phy. 84, 858 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a super-conductor. Science 346, 602–607 (2014). ADSCrossRefGoogle Scholar
  3. 3.
    W. DeGottardi, M. Thakurathi, S. Vishveshwara, D. Sen, Majorana fermions in superconducting wires: effects of long-range hopping, broken time-reversal symmetry, and potential land-scapes. Phys. Rev. B 88, 165111 (2013). ADSCrossRefGoogle Scholar
  4. 4.
    G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, C. Beenakker, Many-body characterization of particle-conserving topological superfluids. Phys. Rev. Lett. 113, 267002 (2014). ADSCrossRefGoogle Scholar
  5. 5.
    D. Vodola, L. Lepori, E. Ercolessi, A.V. Gorshkov, G. Pupillo, Kitaev chains with long-range pairing. Phys. Rev. Lett. 113, 156402 (2014). ADSCrossRefGoogle Scholar
  6. 6.
    F. Pientka, L.I. Glazman, F. von Oppen, Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013). ADSCrossRefGoogle Scholar
  7. 7.
    N. Read, Compactly supported Wannier functions and algebraic k-theory. Phys. Rev. B 95, 115309 (2017). ADSCrossRefGoogle Scholar
  8. 8.
    A.Y. Kitaev, Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001). ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Lee, J.D. Joannopoulos, Simple scheme for surface-band calculations. I. Phys. Rev. B 23, 4988–4996 (1981). ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)Google Scholar
  11. 11.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Holt, Rinehart and Winston, New York, 1976)Google Scholar
  12. 12.
    H.J. Mikeska, W. Pesch, Boundary effects on static spin correlation functions in the isotropicx—y chain at zero temperature. Zeitschrift für Physik B Condens. Matter 26, 351–353 (1977). ADSGoogle Scholar
  13. 13.
    I.E. Tamm, On the possible bound states of electrons on a crystal surface. Physikalische Zeitschrift der Sowjetunion 1, 733 (1932)Google Scholar
  14. 14.
    W. Shockley, On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939). ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    G. Seifert, Tight-binding density functional theory: an approximate KohnSham DFT scheme. J. Phys. Chem. A 111, PMID: 17439198, 5609–5613 (2007). ADSCrossRefGoogle Scholar
  16. 16.
    L. Jiang, T. Kitagawa, J. Alicea, A.R. Akhmerov, D. Pekker, G. Refael, J.I. Cirac, E. Demler, M.D. Lukin, P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011). ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)zbMATHCrossRefGoogle Scholar
  18. 18.
    I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials (Academic, New York, 1982)zbMATHGoogle Scholar
  19. 19.
    A. Alase, E. Cobanera, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: theory. Phys. Rev. B 96, 195133 (2017). CrossRefGoogle Scholar
  20. 20.
    V. Dwivedi, V. Chua, Of bulk and boundaries: generalized transfer matrices for tight-binding models. Phys. Rev. B 93, 134304 (2016). ADSCrossRefGoogle Scholar
  21. 21.
    F. Bechstedt, Principles of Surface Physics, 1st edn. (Springer, Berlin, 2012)Google Scholar
  22. 22.
    W.F. Trench, A note on computing eigenvalues of banded Hermitian Toeplitz matrices. SIAM J. Sci. Comput. 14, 248 (1993). MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    F. De Terán, F.M. Dopico, P. Van Dooren, Matrix polynomials with completely prescribed eigenstructure. SIAM J. Matrix Anal. Appl. 36, 302 (2015). MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J.C. Avila, H. Schulz-Baldes, C. Villegas-Blas, Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 137–170 (2013). MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    L.E. Ballentine, Quantum Mechanics: A Modern Development, 2nd edn. (World Scientific Publishing Company, Singapore, 2014)zbMATHCrossRefGoogle Scholar
  26. 26.
    A. Quelle, E. Cobanera, C.M. Smith, Thermodynamic signatures of edge states in topological insulators. Phys. Rev. B 94, 075133 (2016). ADSCrossRefGoogle Scholar
  27. 27.
    M. Püschel, J.M. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32, 1280–1316 (2003). MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    G. Ortiz, R. Somma, J. Dukelsky, S. Rombouts, Exactly-solvable models derived from a generalized Gaudin algebra. Nucl. Phys. B 707, 421–457 (2005). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    E. Cobanera, A. Alase, G. Ortiz, L. Viola, Exact solution of corner-modified banded block-Toeplitz eigensystems. J. Phys. A: Math. Theor. 50, 195204 (2017). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    I.M. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Springer, Berlin, 2008)zbMATHGoogle Scholar
  31. 31.
    R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  32. 32.
    J. Demmel, I. Dumitriu, O. Holtz, Fast linear algebra is stable. Numer. Math. 108, 59–91 (2007). MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851 (1993). ADSCrossRefGoogle Scholar
  35. 35.
    R.S.K. Mong, V. Shivamoggi, Edge states and the bulk-boundary correspondence in Dirac Hamiltonians. Phys. Rev. B 83, 125109 (2011). ADSCrossRefGoogle Scholar
  36. 36.
    P. Delplace, D. Ullmo, G. Montambaux, Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011). ADSCrossRefGoogle Scholar
  37. 37.
    S. Mao, Y. Kuramoto, K.-I. Imura, A. Yamakage, Analytic theory of edge modes in topological insulators. J. Phys. Soc. Jpn. 79, 124709 (2010). ADSCrossRefGoogle Scholar
  38. 38.
    S.S. Hegde, S. Vishveshwara, Majorana wave-function oscillations, fermion parity switches, and disorder in Kitaev chains. Phys. Rev. B 94, 115166 (2016). ADSCrossRefGoogle Scholar
  39. 39.
    G. Biczó, O. Fromm, J. Kouteck, A. Lee, Inversion-free formulation of the direct recursion (transfer matrix) method. Chem. phys. 98, 51–58 (1985). ADSCrossRefGoogle Scholar
  40. 40.
    T.B. Boykin, Generalized eigenproblem method for surface and interface states: the complex bands of GaAs and AlAs. Phys. Rev. B 54, 8107 (1996). ADSCrossRefGoogle Scholar
  41. 41.
    L.G. Molinari, Identities and exponential bounds for transfer matrices. J. Phys. A: Math. Theor. 46, 254004 (2013). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    E. Cobanera, A. Alase, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: interfaces and topological surface band structure. Phys. Rev. B 98, 245423 (2018). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhijeet Alase
    • 1
  1. 1.Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryCanada

Personalised recommendations