Nanoparticles from Endophytic Fungi and Their Efficacy in Biological Control

  • B. Shankar Naik
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology which involves different approaches for the synthesis and application of nanoparticles has dimension smaller than 100 nm generating most promising applications in electronics, medicine, and agriculture. Biological synthesis of nanoparticles emerged as an attractive alternative to physical and chemical methods. Various biological entities such as plant, algae, fungi, yeast, bacteria, and viruses could be employed for the biosynthesis of nanoparticles. Endophytic fungi are the microbes that reside in healthy tissues of plants without causing any overt symptoms. Endophytic fungi are known to produce metal nanoparticles which are highly active against several microbial pathogens of humans and plants. The present review focuses on biological synthesis of nanoparticles from endophtyic fungi and their efficacy in control of bacterial and fungal pathogens.


Biocontrol Endophytic fungi Nanobiotechnology Nanoparticles 


  1. Abdel-Hafez SII,Nafady NA, Abdel-Rahim IR, Shaltout AM, J Daròs JA, Mohamed MA (2016a) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):1–12Google Scholar
  2. Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR, Shaltout AM, Mohamed MA (2016b) Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum. Int J Nano Chem 2(1):11–19CrossRefGoogle Scholar
  3. Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR, Shaltout AM, Dars JA, Mohamed MA (2017) Biosynthesis of Silver Nanoparticles Using the Compound Curvularin isolated from the Endophytic Fungus Epicoccum Nigrum: Characterization and Antifungal activity. Journal of Pharmaceutical and Applied Chemistry 3(2):135–146Google Scholar
  4. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M, Wang S), Springer Singapore Pte Ltd. 61–87Google Scholar
  5. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  6. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alt V, Bechert T, Steinrucke P, Wagener M, Siedel P, Dingeldein E, Scheddin D, Domann E, Schnettler R (2004) Nanoparticulate silver: a new antimicrobial substance for bone cement. Orthopade 33:885–892PubMedCrossRefGoogle Scholar
  8. Alzahrani E, Sharfalddin A, Alamodi M (2015) Microwave hydrothermal synthesis of ferric oxide doped with cobalt. Adv Nanopart 4:53–60CrossRefGoogle Scholar
  9. Amulyavichus A, Daugvila R, Davidonis R, Sipavichus C (1998) Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Met 85:111–117Google Scholar
  10. Andrade PF, de Faria AF, Oliveira SR, Goncalves MDC, Arruda MAZ (2016) Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nano particles. Water Res 81:333–342CrossRefGoogle Scholar
  11. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 79:93–100CrossRefGoogle Scholar
  12. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419, Scholar
  13. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612 DOI: Scholar
  14. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:
  15. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. doi:
  16. Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17PubMedCrossRefGoogle Scholar
  17. Bansal V, Rautray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mat Chem 14:3303–3305CrossRefGoogle Scholar
  18. Barik TK, Sahu B, Swain V (2008) Nano-silica medicine to pest control. Parasitol Res 103:253–258PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bharathidasan R, Panneerselvam A (2012) Biosynthesis and characterization of silver nanoparticles using endopyhtic fungus Aspergillus conius, Penicillium janthinellum, and Phomopsis sp. Int J Pharm Sci Res 3:3163–3169Google Scholar
  20. Bhattacharya R, mukherjee P (2008) Biological properties of naked nanoparticles. Adv Drug Del Rev 60:1289–1306CrossRefGoogle Scholar
  21. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319Google Scholar
  22. Birla SS, Tiwari VV, Gade AK et al (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherchia coli, Pseudomonas auruginosa and Staphylococcus aureus. Lett App Microbiol 48:173–179CrossRefGoogle Scholar
  23. Bowman SM, Free JF (2011) The structure and synthesis of the fungal cell-wall. Bio Essays 28:799–808Google Scholar
  24. Brayner R, Ferrari-Iliou R, Brivois N, Djediyat S, Benedetti MF, Flevet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870PubMedCrossRefGoogle Scholar
  25. Chan YS, Mashitah MD (2012) Instantaneous biosynthesis of silver nanoparticles by selected macrofungi. Aust J Basic Apl. Sci 6: 222–226Google Scholar
  26. Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Sci Pharm 81:607–621PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen N, Zheng Y, Yin J et al (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J VirolMeth 193:470–477Google Scholar
  28. Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31Google Scholar
  29. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588PubMedCrossRefGoogle Scholar
  30. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  31. Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect 8:397–403CrossRefGoogle Scholar
  32. Corradini E, de-Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Poly Lett 4:509–515CrossRefGoogle Scholar
  33. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefGoogle Scholar
  34. De Lima R, Seabra AB, Duran N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879PubMedCrossRefGoogle Scholar
  35. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya. Mycobiology 40:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  36. Devi LS, Bareh DA, Joshi SR (2014) Studies on biosynthesis of antimicrobial silver nanoparticles using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc Natl Acad Sci India Section B Biol Sci 84:1091–1099CrossRefGoogle Scholar
  37. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticles biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73CrossRefGoogle Scholar
  38. Donaldson K (2004) Nanotoxicology. Occup Environ Med 61:727–728PubMedPubMedCentralCrossRefGoogle Scholar
  39. Duran A, Nombela C (2004) Fungal cell-wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103PubMedCrossRefPubMedCentralGoogle Scholar
  40. Duran N, Marcato PD, Duran M et al (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. App Microbiol Biotechnol 90:1609–1624CrossRefGoogle Scholar
  41. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV. J Nanobiotechnol 3:1–10CrossRefGoogle Scholar
  42. EL-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA. F4 and its application against phytopathogens. Sci Rep 7:45297. Scholar
  43. Farrukh A, Akram A, Ghaffar A, Yameen B (2013) Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation. ACS Appl Mater Interfaces 5:37843793CrossRefGoogle Scholar
  44. Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1:441–449PubMedPubMedCentralCrossRefGoogle Scholar
  45. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomed 5:382–386CrossRefGoogle Scholar
  47. Galiano K, Pleifer C, Engelhardt K, Brossner G, Lackner P, Huck C, Lass-Flörl C, Obwegeser A (2008) Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol Res 30:285–287PubMedCrossRefPubMedCentralGoogle Scholar
  48. Goel A (2015) Agricultural applications of nanotechnology. J Biol Chem Res 32:260–266Google Scholar
  49. Golinska P, Wypij M, Rathod S, TIKAR S, Dahm H, Rai M (2015) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56:541–556PubMedCrossRefGoogle Scholar
  50. Golinska P, Rathod D, Wypij M, Gupta I, Składanowski M, Paralikar P, Dahm H & Rai M Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit Rev Biotechnol 37(6):765–778Google Scholar
  51. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  52. Govindappa M, Farheen H, Chandrappa CP, Channabasava RRV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol 7:035014CrossRefGoogle Scholar
  53. He M, Protesescu L, Caputo R et al (2015) A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (in, Ga, bi, Sb, Zn, cu, Sn and their alloys) via in situ formed metal long-chain amides. Chem Mater 27:635–647CrossRefGoogle Scholar
  54. Holan ZR, Volesky B (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. App Biochem Biotechnol 53(2):133–146CrossRefGoogle Scholar
  55. Hu RL, Li SR, Kong FJ et al (2014) Inhibition effect of silver nanoparticles on herpes simplex virus 2. Gene Mol Res 13:7022–7028CrossRefGoogle Scholar
  56. Huang YF, Chang HT, Tan WH (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ingle A, Gade A, Pierrat S et al (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  58. Jain N, Bhargava A, Majumdar S et al (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641PubMedCrossRefPubMedCentralGoogle Scholar
  59. Johnson R, Sabnis N, McConathy WJ, Lacko AG (2013) The potential role of nanotechnology in therapeutic approaches for triple negative breast cancer. Pharmaceutics 5:353–370PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jung WK, Koo HC, Kim KW et al (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kar P, Murmu S, Saha S et al (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9:84693CrossRefGoogle Scholar
  62. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim S, Choi JE, Cho J et al (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatomacells. Toxicol In Vitro 23:1076–1084PubMedCrossRefGoogle Scholar
  64. Kim SW, Jung JH, Lamsal K et al (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917PubMedCrossRefPubMedCentralGoogle Scholar
  66. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns II. Renewed interest for silver. Burns 26:131–138PubMedCrossRefGoogle Scholar
  67. Kumar SA, Abyaneh MK, Gosavi SW et al (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  68. Li G, He D, Qian Y et al (2012) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476PubMedCrossRefGoogle Scholar
  69. Louise R, Zhou X, Tang L et al (2010) Immobilization of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110:1349–1357CrossRefGoogle Scholar
  70. Madigan MT, Martinko JM, Brock TD (2006) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, p 992Google Scholar
  71. Manjunath HM, Joshi CG, Raju NG (2014) Biogenic synthesis of silver nano particles using endophytic fungi Penicillium nodositatum and its antibacterial activity. J Chem Pharm Res 6:112–117Google Scholar
  72. Manjunath HM, Joshi CG, Raju NG (2017) Biofabrication of gold nanoparticles using marine endophytic fungus – Penicillium citrinum. IET Nano biotechnol 11(1):40–44CrossRefGoogle Scholar
  73. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mermel LA (2000) Prevention of intravascular catheter-related infections. Ann Intern Med 132:391–402PubMedCrossRefPubMedCentralGoogle Scholar
  75. Millan G, Agosto F, Vazquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr 35:293–302CrossRefGoogle Scholar
  76. Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  77. Mukherjee P, Roy M, Mandal BP et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110Google Scholar
  78. Nanda A, Majeed S (2014) Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int J Pharm Tech Res 6:217–223Google Scholar
  79. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  80. Netala VR, Bobbu P, Ghosh SB et al (2015) Endophytic fungal assisted synthesis of silver nanoparticles, characterization, and antimicrobial activity. Asian J Pharm Clin Res 8:113–116Google Scholar
  81. Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3Biotech 6(2):132Google Scholar
  82. Nameirakpam ND, Dheeban SP, Sutha S (2012) Biomimetic synthesis of silver nanoparticles from an endophytic fungus and their antimicrobial efficacy. Int J Biomed Adv Res 3(5):309–315Google Scholar
  83. Onodera A, Nishiumi F, Kakiguchi K et al (2015) Short-term changes in intracellular ROS localization after the silver nanoparticles exposure depending on particle size. Toxicol Rep 2:574–579PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ortega FG, Fernandez-Baldo MA, Fernandez JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine 10:2021–2031PubMedPubMedCentralGoogle Scholar
  85. Peterson MSM, Bouwman J, Chen A, Deutsch M (2007) Inorganic metallodielectric materials fabricated using two single-step methods based on the Tollens’ process. J Colloid Interface Sci 306:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  86. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(32)Google Scholar
  87. Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)Google Scholar
  88. Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)Google Scholar
  89. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: Scholar
  90. Prasad R, Kumar V, Kumar M, Wang S (2018) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3)
  91. Prasad R, Jha A, Prasad K (2018a) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0)
  92. Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613–1619PubMedCrossRefPubMedCentralGoogle Scholar
  93. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028PubMedCrossRefGoogle Scholar
  94. Raheman F, Deshmukh S, Ingle A et al (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178CrossRefGoogle Scholar
  95. Rahi DK, Parmar AS (2014) Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. Int J Nanomater Biostruct 4:46–51Google Scholar
  96. Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284PubMedCrossRefGoogle Scholar
  97. Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267CrossRefGoogle Scholar
  98. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  99. Rai M, Ingle AP, Gade A, Duran N (2015) Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease causing bacteria and fungi. IET Nanobiotechnol 9:71–75PubMedCrossRefGoogle Scholar
  100. Rajan CS (2011) Nanotechnology in groundwater remediation. Int J Envir Sci Dev 2:182–187CrossRefGoogle Scholar
  101. Ramalingmam P, Muthukrishnan S, Thangaraj P (2015) Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng 1:241–247Google Scholar
  102. Rathna GS, Elavarasi A, Peninal S et al (2013) Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. Int J Pharm Biol Arch 4:481–487Google Scholar
  103. Ricco JB (2006) Inter Gard silver bifurcated graft: features and results of a multicenter clinical study. J Vasc Surg 44:39–46CrossRefGoogle Scholar
  104. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. Sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefGoogle Scholar
  105. Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:502–504CrossRefGoogle Scholar
  106. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593PubMedCrossRefGoogle Scholar
  107. Singh D, Rathod V, Ninganagouda S, et al (2013) Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic Gram-negative bacteria. J Pharm Res. 7:448–453CrossRefGoogle Scholar
  108. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic Fungi sp. isolated from (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 1:1–8Google Scholar
  109. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS (2017) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Gen Eng Biotechnol 15(1):31–39PubMedCrossRefGoogle Scholar
  110. Shanmukh S, Jones L, Zhao YP, Driskell JD, Tripp RA, Dluhy RA (2008) Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal Bioanal Chem 390:1551–1555PubMedCrossRefGoogle Scholar
  111. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  112. Sharma S, Kumar S, Bulchandani BD, Taneja S, Banyal S (2013) Green synthesis of silver nanoparticles and their antimicrobial activity against gram positive and gram negative bacteria. Int J Biotechnol Bioeng Res 7:711–714Google Scholar
  113. Shivshankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  114. Shrivastava S, Bera T, Singh SK (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364PubMedCrossRefGoogle Scholar
  115. Sibbald RJ, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K (2007) Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care 20:549–558PubMedCrossRefGoogle Scholar
  116. Sondi I, Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  117. Subbarao V, Kartheek V, Sirisha D (2013) Slow release ofpotash fertilizer through polymer coating. Int J Appl SciEng 11(1):25Google Scholar
  118. Sun X, Luo Y (2005) Preparation and size control of silver nanoparticles by a thermal method. MaterLett 59:3847–3850Google Scholar
  119. Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CL (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun 40:5059–5061CrossRefGoogle Scholar
  120. Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles by using endophytic bacterium Bacillus cereus: a novel source in benign synthesis. Glob J Med Res 2(12):953–959Google Scholar
  121. Syed A, Saraswati S, Kundu GC et al (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta Part A Mol Biomol Spectrosc 14:144–147CrossRefGoogle Scholar
  122. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262CrossRefGoogle Scholar
  123. Telling ND, Coker VS, Cutting RS, Laan G, Pearce E, Pattrick RAD, Arenholz E, Lloyd JR (2009) Remediation of Cr(VI) by biogenic magnetic nanoparticles: an X-ray magnetic circular dichroism study. Appl Phys Lett 95(16). Scholar
  124. Vago A, Szakacs G, Safran G, Horvath R, Pecz B, Lagzi I (2016) One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem Phys Lett 645:1–4CrossRefGoogle Scholar
  125. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by the fungus Trichoderma reesei. Insci J 1:65–79CrossRefGoogle Scholar
  126. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40CrossRefGoogle Scholar
  127. Verma SK,Gond SK (2016) Biofabrication of antibacterial and antioxidant silver nanoparticles (AgNps) by an endophytic fungus Pestalotia sp. isolated from Madhuca longifolia. J Nanomat Mol Nanotechnol 5(4): doi:10.4172/2324-8777.1000189Google Scholar
  128. Vijayan S, Divya K, George TK, Jisha MS (2016) Biogenic synthesis of silver nanoparticles using endophytic fungi Fusarium oxysporum isolated from Withania somnifera, its antibacterial and cytotoxic activity. J Bionanosci 10:1–8CrossRefGoogle Scholar
  129. Vidhya S, Rajagopal K (2016) Isolation and identification of thermo tolerant endophytic fungi from Melia dubia and synthesis of Zinc nanoparticles. Int J NanoSci Nanotechnol 7: (2) 99–112Google Scholar
  130. Wang L, Li Z, Zhang G et al (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wong KK, Cheung SO, Huang LM, Niu J, Tao C, Ho CM, Che CM, Tam PK (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem 4:1129–1135PubMedCrossRefGoogle Scholar
  132. Xiang DX, Chen Q, Pang L et al (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J Virol Methods 178:137–142PubMedCrossRefGoogle Scholar
  133. Yadav A, Kon K, Kratosova G, Duran N, Avinash P, Ingle RM (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120PubMedCrossRefGoogle Scholar
  134. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  135. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494PubMedCrossRefGoogle Scholar
  136. Zhang T, Wang L, Chen Q et al (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–291PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • B. Shankar Naik
    • 1
  1. 1.Department of BiologyGovernment Science College, Basavanahalli ExtensionChikmagalurIndia

Personalised recommendations