Application of Nanotechnology for Sustainable Crop Production Systems

  • Akbar Hossain
  • Rout George Kerry
  • Muhammad Farooq
  • Nawfel Abdullah
  • M. Tofazzal Islam
Part of the Nanotechnology in the Life Sciences book series (NALIS)


In relation to other applied sciences, nanotechnology has a great potential for sustainability of crop production in the era of climate change. In the present chapter, we highlighted that nanomaterials such as nanofertilizers, nanopesticides, nanocarriers, nanosensors, nano-packaging and nano-chips can be potentially used to improve the crop productivity. The use of nanomaterials reduces the amount of sprayed agrochemicals by smart delivery of active ingredients, minimizes nutrient losses in fertilization and increases yields through optimized water and nutrient management. Similarly, nanosensors can increase water, nutrient and chemical use efficiency. Therefore, it is an eco-friendly and economically viable tool. Nanotechnology-led innovations are also being used in plant improvement and genomic transformation programmes. New nanoparticles from biomasses such as highly porous nano-carbon for lignocellulosic fibre jute remarkably add high value to the agricultural produces and processed materials. Therefore, applied research-based potential use of nanotechnology is needed for sustainable crop production systems under the changing climate.


Climate change Nanomaterials Nanotechnology Sustainable crop production 



We are thankful to the Government of Bangladesh for partially funding this work through a HEQEP CPSF#2071 to the Department of Biotechnology of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh.


  1. Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):e0902. Scholar
  2. Abdellatif KF, Abdelfattah RH, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abubakar A, Bala AY, Singh K (2017) Plant molluscicides and their modes of action: a review. Int J Sci Res Technol 2(1):37–49Google Scholar
  4. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138Google Scholar
  6. Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. Int J Nucl Quantum Engg 9(6):594–598Google Scholar
  7. Angelakis E, Azhar EI, Bibi F, Yasir M, Al-Ghamdi AK, Ashshi AM, Elshemi AG, Raoult D (2014) Paper money and coins as 772 potential vectors of transmissible disease. Future Microbiol 9(773):249–261PubMedCrossRefPubMedCentralGoogle Scholar
  8. Antonoglou O, Moustaka J, Adamakis ID, Sperdouli I, Pantazaki AA, Moustakas M, Dendrinou-Samara C (2018) Nanobrass CuZn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Appl Mater Interfaces 10(5):4450–4461PubMedCrossRefPubMedCentralGoogle Scholar
  9. Araújoa R, Castrob ACM, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today: Proceed 2:315–320Google Scholar
  10. Askary M, Amirjani MR, Saberi T (2016) Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. J Plant Nutr 40(7):974–982CrossRefGoogle Scholar
  11. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbiol Cell Fact 13:66. Scholar
  12. Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sust Water Resour Manage 2(2):161–173CrossRefGoogle Scholar
  13. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28(5):2671–2679PubMedCrossRefPubMedCentralGoogle Scholar
  15. Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2:919–927PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248PubMedCrossRefGoogle Scholar
  17. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  18. Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioural avoidance of vectors of human diseases in Thailand. Parasitol Vectors 6:280. Scholar
  19. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22CrossRefGoogle Scholar
  20. Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture, vol 1. Sustainable Agriculture Reviews. Springer, Cham, pp 247–282CrossRefGoogle Scholar
  21. Coelho P, Caldeira R (2016) Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect Dis Poverty 5:57. Scholar
  22. Clare N, Linda A, Guillaume G (2011) Agricultural, food, and water nanotechnologies for the poor: opportunities, constraints, and role of the consultative group on international agricultural research. The International Food Policy Research Institute, Washington, DCGoogle Scholar
  23. Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  24. Das DK, Mandal M (2015) Advanced technology of fertilizer uses for crop production. In: Sinha S, Pant KK, Bajpai S (eds) Fertilizer technology, vol 1. Synthesis. Studium Press LLC, Houston, pp 19–67Google Scholar
  25. De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New DelhiCrossRefGoogle Scholar
  26. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91. Scholar
  27. Diallo M, Brinker CJ (2011) Nanotechnology for sustainability: environment, water, food, minerals, and climate. In: Roco MC, Hersam MC, Mirkin CA (eds) Nanotechnology research directions for societal needs in 2020. Springer, Dordrecht, pp 221–259CrossRefGoogle Scholar
  28. Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J Pharm Technol Res 9:121–144Google Scholar
  29. Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66(26):6462–6473PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ditta A, Arsha M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 55–75Google Scholar
  31. Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F (2012) Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7(9):e44504. Scholar
  32. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13(4):822–828CrossRefGoogle Scholar
  33. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  34. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Coll Surfaces A: Physicochem Engg Aspects 372(1–3):66–72CrossRefGoogle Scholar
  35. Enciu D, Toader A, Ursu I (2014) Magnetic field nanosensor based on Mn impurities. Incas Bulletin 6(2):51–60CrossRefGoogle Scholar
  36. FAO (2017) The future of food and agriculture – trends and challenges. Food and Agriculture Organization, RomeGoogle Scholar
  37. FAO (Food and Agriculture Organization) (2009). Sustainable crop production intensification. Available at Accessed 27 July 2018
  38. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. Scholar
  39. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Engg 2(1):239–259CrossRefGoogle Scholar
  40. Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J (2017) Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 9(13):4366–4382PubMedCrossRefGoogle Scholar
  41. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222PubMedCrossRefGoogle Scholar
  43. Grillo R, Oliveira HC, Lima R, Fraceto LF (2015) Polymeric nanoparticles as carrier systems for herbicides. J Nanomed Nanotechnol 6(4).
  44. Gruere G, Narrod C, Abbott L (2013) Agriculture, food, and water nanotechnologies for the poor opportunities and constraints. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  45. Guang XY, Wang JJ, He ZG, Chen GX, Ding L, Dai JJ, Yang XH (2013) Molluscicidal effects of nano-silver biological molluscicide and niclosamide. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 25(5):503–505PubMedPubMedCentralGoogle Scholar
  46. Hassall KA (1965) Pesticides: their properties, uses and disadvantages: part I: general introduction; insecticides and related compounds. British Vet J 121(3):105–118CrossRefGoogle Scholar
  47. Halford B (2005) Nano dictionary. Chem Engg News 83(15):31CrossRefGoogle Scholar
  48. Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience and nanotechnology. CRC Press, Boca Raton, p 1640. Scholar
  49. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. Scholar
  50. Iqbal M, Li C, Jiang B, Hossain MSA, Islam MT, Henzie J, Yamauchi Y (2017) Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. J Mater Chem A 5:21249–21256CrossRefGoogle Scholar
  51. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 305–317Google Scholar
  52. Islam MS, Akter N, Rahman MM, Shi C, Islam MT, Zeng H, Azam MS (2018) Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain Chem Engg 6(7):9178–9188CrossRefGoogle Scholar
  53. Jin R (2012) The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol Rev 1(1):31–56CrossRefGoogle Scholar
  54. Jhanzab HM, Razzaq A, Jilani G, Rehman A, Hafeez A, Yasmeen F (2015) Silver nano-particles enhance the growth, yield and nutrient use efficiency of wheat. Int J Agron Agri Res 7(1):15–22Google Scholar
  55. Jiang B, Li C, Dag O, Abe H, Takei T, Imai T, Hossain MSA, Islam MT, Wood K, Henzie J, Yamauchi Y (2017) Mesoporous metallic rhodium nanoparticles. Nat Commun 8:15581. Scholar
  56. Jie H, Jose RP, Jorge LG (2013) Nanomaterials in agricultural production: benefits and possible threats? Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, USA, pp 73–90Google Scholar
  57. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684PubMedCrossRefGoogle Scholar
  58. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Persp 117(12):1813. Scholar
  59. Khan JH, Lin J, Young C, Matsagar BM, Wu KC, Dhepe PL, Islam MT, Rahman M, Shrestha LK, Alshehri SM, Ahamad T (2018) High surface area nanoporous carbon derived from Bangladeshi jute. Mater Chem Phys 216(1):491–495CrossRefGoogle Scholar
  60. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785PubMedPubMedCentralCrossRefGoogle Scholar
  61. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  62. Kelly KL (2004) Nanotechnology grows up. Science 304:1732–17345CrossRefGoogle Scholar
  63. Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige DMB, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221PubMedCrossRefGoogle Scholar
  64. Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167(1–3):366–373PubMedCrossRefGoogle Scholar
  65. Kumar GD, Natarajan N, Nakkeeran S (2016) Antifungal activity of nanofungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina. Afr J Microbiol Res 10(4):100–105CrossRefGoogle Scholar
  66. Kumar M, Shamsi TN, Parveen R, Fatima S (2017) Application of nanotechnology in enhancement of crop productivity and integrated pest management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 361–371CrossRefGoogle Scholar
  67. Kutz FW, Wood PH, Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82PubMedCrossRefGoogle Scholar
  68. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5(16):7965–7973CrossRefGoogle Scholar
  69. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122CrossRefGoogle Scholar
  70. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139CrossRefGoogle Scholar
  71. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263. Scholar
  72. Mahmoodi P, Yarnia M, Amirnia R, Tarinejad A, Mahmoodi H (2017) Comparison of the effect of nano urea and nono iron fertilizers with common chemical fertilizers on some growth traits and essential oil production of Borago officinalis L. Dairy Vet Sci J 2(2):555585. Scholar
  73. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13Google Scholar
  74. McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV (2017) Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 9(38):32430–32435PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mehrazar E, Rahaie M, Rahaie S (2015) Application of nanoparticles for pesticides, herbicides, fertilisers and animals feed management. Int J Nanopart 8(1):1–9CrossRefGoogle Scholar
  76. Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:13001. Scholar
  77. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172. Scholar
  79. Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, p 3461Google Scholar
  80. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305–313PubMedPubMedCentralCrossRefGoogle Scholar
  81. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioproc Technol 4(1):39–47CrossRefGoogle Scholar
  82. Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agric Food Chem 60(40):9929–9940PubMedCrossRefPubMedCentralGoogle Scholar
  83. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483CrossRefGoogle Scholar
  84. de Oliveira JL, Campos EVR, da Silva CMG, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432PubMedCrossRefPubMedCentralGoogle Scholar
  85. Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10(7):e0132971. Scholar
  86. Omobhude ME, Morenikeji OA, Oyeyemi OT (2017) Molluscicidal activities of curcumin-nisin polylactic acid nanoparticle on Biomphalaria pfeifferi. PLoS Negl Trop Dis 11(8):e0005855. Scholar
  87. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9(1):34–42CrossRefGoogle Scholar
  88. Pandey S, Giri K, Kumar R, Mishra G, Rishi RR (2016) Nanopesticides: opportunities in crop protection and associated environmental risks. Proceed Nat Acad Sci India Sec B Biol Sci 2016:1–22Google Scholar
  89. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127CrossRefGoogle Scholar
  90. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:25–34Google Scholar
  91. Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873PubMedCrossRefPubMedCentralGoogle Scholar
  92. Pierluigi C, Robert ES, John EC (2003) Phenylpyrazole insecticide photochemistry, metabolism and GABAergic action: ethiprole compared with fipronil. J Agri Food Chem 51:7055–7061CrossRefGoogle Scholar
  93. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169Google Scholar
  94. Pradeep T (2012) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478CrossRefGoogle Scholar
  95. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  96. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  97. Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in Bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5)
  98. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  99. Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–2022CrossRefGoogle Scholar
  100. Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:41–44Google Scholar
  101. Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503PubMedCrossRefPubMedCentralGoogle Scholar
  102. Rizwan MD, Singh M, Mitra CK, Morve RK (2014) Eco-friendly application of nanomaterials: Nanobioremediation. J Nanopart 431787(7). Scholar
  103. Rolando CA, Garrett LG, Baillie BR, Wat MS (2013) A survey of herbicide use and a review of environmental fate in New Zealand planted forests. New Zealand J Forest Sci 43:17. Scholar
  104. Sánchez-Moreno S, Alonso-Prados E, Alonso-Prados JL, García-Baudín JM (2009) Multivariate analysis of toxicological and environmental properties of soil nematicides. Pest Manag Sci 65(1):82–92PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sargent Jr JF (2011) Nanotechnology and environmental health and safety: issues for consideration. CRS Report for Congress, Congressional Research Service, 7-5700,, RL34614, p 37
  106. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838PubMedCrossRefPubMedCentralGoogle Scholar
  107. Salinas S, Mosquera N, Yate L, Coy E, Yamhure G, González E (2014) Surface plasmon resonance nanosensor for the detection of arsenic in water. Sens Transducers 183(12):97–102Google Scholar
  108. Sastry RK, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36(3):391–400CrossRefGoogle Scholar
  109. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri-food systems. J Sci Food Agric 15:22–44Google Scholar
  110. Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous overview on the controlled release fertilizers. Adv Chem 363071:16. Scholar
  112. Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 117(2):92. Scholar
  113. Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243PubMedCrossRefPubMedCentralGoogle Scholar
  114. Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364CrossRefGoogle Scholar
  115. Sharma HD, Reddy KR (2004) Geo-environmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, HobokenGoogle Scholar
  116. Si Y, Zhang Z, Wu W, Fu Q, Huang K, Nitin N, Ding B, Sun G (2018) Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci Adv 4(3):eaar5931. Scholar
  117. Siafaka PI, Okur NU, Karavas E, Bikiaris DN (2016) Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci 17(9):1440. Scholar
  118. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M (eds) Nanotechnology and plant sciences. Springer, Switzerland, p 303Google Scholar
  119. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139CrossRefGoogle Scholar
  120. Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr-Meth 51(1–2):351–355CrossRefGoogle Scholar
  121. Soko W, Chimbari MJ, Mukaratirwa S (2015) Insecticide resistance in malaria-transmitting mosquitoes in Zimbabwe: a review. Infect Dis Poverty 4:46. Scholar
  122. Song Y, Li Y, Xu Q, Liu Z (2017) Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomedicine 12:87–110PubMedCrossRefPubMedCentralGoogle Scholar
  123. Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  124. Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76CrossRefGoogle Scholar
  125. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295. Scholar
  126. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 4:1189–1197CrossRefGoogle Scholar
  127. US (EPA) Environmental Protection Agency (2007) Nanotechnology white paper. EPA, Washington, DC. Accessed 26 June 2018Google Scholar
  128. US Department of Agriculture (2002) Nanoscale science and engineering for agriculture and food systems. United States Department of Agriculture, National Planning Workshop, November 18–19, 2002, Washington, DCGoogle Scholar
  129. Wang X, Xie H (2018) A review on applications of remote sensing and geographic information systems (GIS) in water resources and flood risk management. Water 10(5):608. Scholar
  130. Watson JG (1996) Physical/chemical treatment of organically contaminated soils and sediments. J Air Waste Manage Assoc 46(10):993–1003CrossRefGoogle Scholar
  131. Walters JP, Archer DW, Sassenrath GF, Hendrickson JR, Hanson JD, Halloran JM, Vadas P, Alarcon VJ (2016) Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol Model 333(10):51–65CrossRefGoogle Scholar
  132. Wu SG, Huang L, Head J, Ball M, Tang YJ, Chen D-R (2014) Electrospray facilitates the germination of plant seeds. Aerosol Air Qual Res 14:632–641CrossRefGoogle Scholar
  133. Wu H, Santana I, Dansie J, Giraldo JP (2017) In vivo delivery of nanoparticles into plant leaves. Curr Protoc Chem Biol 9(4):269–284PubMedCrossRefGoogle Scholar
  134. Xing G, Cao Y, Shi S, Sun G, Du L, Zhu J (2001) N pollution sources and denitrification in water bodies in Taihu Lake region. Sci China Ser B: Chem 44(3):304–314CrossRefGoogle Scholar
  135. Xingmao M, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles ENPs and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061CrossRefGoogle Scholar
  136. Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on non-target microorganisms. ISRN Ecol 130289:8. Scholar
  137. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar
  138. Yuce M, Kurt H (2017) How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 7:49386. Scholar
  139. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17. Scholar
  141. Zhang W (2003) Environmental technologies at the nanoscale. Environ Sci Technol 7:103–108Google Scholar
  142. Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Akbar Hossain
    • 1
  • Rout George Kerry
    • 2
  • Muhammad Farooq
    • 3
    • 4
    • 5
  • Nawfel Abdullah
    • 6
  • M. Tofazzal Islam
    • 7
  1. 1.Bangladesh Wheat and Maize Research InstituteDinajpurBangladesh
  2. 2.PG Department of BiotechnologyUtkal UniversityBhubaneswarIndia
  3. 3.Department of Crop SciencesCollege of Agricultural and Marine Sciences, Sultan Qaboos UniversityMuscatOman
  4. 4.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  5. 5.The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western AustraliaPerthAustralia
  6. 6.Australian Institute of Innovative Materials (AIIM), University of WollongongNorth WollongongAustralia
  7. 7.Institute of Biotechnology and Genetic Engineering (IBGE)Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh

Personalised recommendations