Nanosensors for Food Safety and Environmental Monitoring

  • Kulvinder SinghEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Monitoring of food and water for the presence of contaminants is necessary for both the well-being of the citizens and economy of a country. Prior vigilance and control at an early stage have become a norm in food and healthcare industries, and timely surveillance at local and global level for life-threatening chemicals and microbes is essential for abatement of diseases and epidemics. The advent of industrial revolution bestowed upon humans the burden of several chemicals, pesticides, plastics and antibiotics due to their rampant usage and in return got an immensely contaminated environment bursting with toxic wastes and antibiotic-resistant superbugs. With the emergence of nanotechnology, multitude of affordable rapid and specific sensing techniques has been developed. Keeping in view the implications of extensive contamination of our food and water resources, it becomes necessary for us to attain a pragmatic approach towards implementation of these advanced nano-techniques and fabrication of nanosensor devices that can rapidly sense even single cells or contaminants at sub-picomolar levels. Enhancement of these nanosensors with good affinity chemo−/bioreceptors to deliver reproducible and accurate results along with multiplexing is another niche being explored by various researchers worldwide. In this chapter we discuss a plethora of nanosensors available for detection of food contaminants, viz. adulterants, pathogens and their released toxins, viruses, antibiotics, drugs and additives. Keeping hand in hand with contaminated food are water sources, a primary hub of lethal heavy metals leeched from industries and agrochemicals from crop fields. Nanosensing devices, thus designed and fabricated using nanoelectronics and microfluidic platforms in conjugation with specific receptors, have risen as saviours for food safety and environmental surveillance. This chapter will work as a compendium of nanosensor technologies available in recent times and help to enhance the innovative exploration needed for a wholesome Internet-of-things (IoT) sensing and monitoring.


Biosensing Environmental monitoring Food sensors Nanosensors 


  1. Aghaie A, Khanmohammadi A, Hajian A, Schmid U, Bagheri H (2019) Nonenzymatic electrochemical determination of paraoxon ethyl in water and fruits by graphene-based NiFe bimetallic phosphosulfide nanocomposite as a superior sensing layer. Food Anal Methods 12:1545. Scholar
  2. Akhgari F, Samadi N, Farhadi K (2017) Fluorescent carbon dot as nanosensor for sensitive and selective detection of cefixime based on inner filter effect. J Fluoresc 27:921–927PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126:346–354PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bahreyni A, Yazdian-Robati R, Ramezani M, Abnous K, Taghdisi SM (2018) Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Microchim Acta 185:272CrossRefGoogle Scholar
  5. Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK, Wangoo N (2017) Detection of organophosphorus pesticide – malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J 311:111–116CrossRefGoogle Scholar
  6. Bao Y, Xu P, Cai S, Yu H, Li X (2018) Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors. Talanta 182:148–155PubMedCrossRefPubMedCentralGoogle Scholar
  7. Beigloo F, Noori A, Mehrgardi MA, Mousavi MF (2016) Label-free and sensitive impedimetric nanosensor for the detection of cocaine based on a supramolecular complexation with β-cyclodextrin, immobilized on a nanostructured polymer film. J Iran Chem Soc 13:659–669CrossRefGoogle Scholar
  8. Bilibana MP, Williams AR, Rassie C, Sunday CE, Makelane H, Wilson L, Ntshongontshi N, Jijana AN, Masikini M, Baker PGL, Iwuoha EI (2016) Electrochemical aptatoxisensor responses on nanocomposites containing electro-deposited silver nanoparticles on poly(Propyleneimine) dendrimer for the detection of microcystin-LR in freshwater. Sensors (Switzerland) 16:1–13CrossRefGoogle Scholar
  9. Bratakou S, Nikoleli GP, Siontorou CG, Nikolelis DP, Karapetis S, Tzamtzis N (2017) Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated anti-STX using graphene electrodes. Electroanalysis 29:990–997CrossRefGoogle Scholar
  10. Campos BB, Contreras-Cáceres R, Bandosz TJ, Jiménez-Jiménez J, Rodríguez-Castellón E, da Silva JCGE, Algarra M (2017) Carbon dots coated with vitamin B12 as selective ratiometric nanosensor for phenolic carbofuran. Sens Actuators B Chem 239:553–561CrossRefGoogle Scholar
  11. Cao X, Zhao F, Jiang Z, Hong S, Zhang C, She Y, Jin F, Jin M, Wang J (2018) Rapid analysis of bitertanol in agro-products using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Anal Methods 11:1435–1443CrossRefGoogle Scholar
  12. Chang K, Wang S, Zhang H, Guo Q, Hu X, Lin Z, Sun H, Jiang M, Hu J (2017) Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PLoS One 12:1–12Google Scholar
  13. Chen X, Liu Y, Fang X, Li Z, Pu H, Chang J, Chen J, Mao S (2019) Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens Bioelectron 126:664–671PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O (2018) A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sens Actuators B Chem 254:255–263CrossRefGoogle Scholar
  15. Dewangan PK, Khan F, Shrivas K, Sahu V (2019) Determination of uranium in environmental sample by nanosensor graphene quantum dots. J Radioanal Nucl Chem 320:757. Scholar
  16. Deymehkar E, Taher MA, Karami C, Arman A (2018) Synthesis of SPR nanosensor using gold nanoparticles and its application to copper (II) determination. SILICON 10:1329–1336CrossRefGoogle Scholar
  17. Dong X, Wu K, Zhu W, Wu P, Hou J, Wang Z, Li R, Wu J, Liu Z, Guo X (2019) TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2. J Mater Sci 54:7834–7849CrossRefGoogle Scholar
  18. Dou X, Zhang L, Liu C, Li Q, Luo J, Yang M (2018) Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchim Acta 185:41CrossRefGoogle Scholar
  19. Duan H, Deng W, Gan Z, Li D, Li D (2019) SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction. Microchim Acta 186:175CrossRefGoogle Scholar
  20. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefPubMedCentralGoogle Scholar
  21. Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2017) Ligand-capped CdTe quantum dots as a fluorescent nanosensor for detection of copper ions in environmental water sample. J Fluoresc 27:2323–2333PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fang G, Wang H, Yang Y, Liu G, Wang S (2016) Development and application of a quartz crystal microbalance sensor based on molecularly imprinted sol-gel polymer for rapid detection of patulin in foods. Sens Actuators B Chem 237:239–246CrossRefGoogle Scholar
  23. Fang M, Zhou L, Zhang H, Liu L, Gong ZY (2019) A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination. Food Chem 274:156–161PubMedCrossRefPubMedCentralGoogle Scholar
  24. Feng J, Shen Q, Wu J, Dai Z, Wang Y (2019) Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor. Food Control 98:333–341CrossRefGoogle Scholar
  25. Food and Agriculture Organisation of the United Nations (2016) Guidelines on highly hazardous pesticides. World Health Organisation, RomeGoogle Scholar
  26. Geng Y, Guo M, Tan J, Huang S, Tang Y, Tan L, Liang Y (2019) The fabrication of highly ordered fluorescent molecularly imprinted mesoporous microspheres for the selective sensing of sparfloxacin in biological samples. Sens Actuators B Chem 281:821–829CrossRefGoogle Scholar
  27. Ghalkhani M, Maghsoudi S, Saeedi R, Khaloo SS (2019) Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes. J Iran Chem Soc 16:1301. Scholar
  28. Guo L, Wu X, Liu L, Kuang H, Xu C (2018a) Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 14:1701782CrossRefGoogle Scholar
  29. Guo Z, Jia Y, Song X, Lu J, Lu X, Liu B, Han J, Huang Y, Zhang J, Chen T (2018b) Giant gold nanowire vesicle-based colorimetric and SERS dual-mode immunosensor for ultrasensitive detection of Vibrio parahemolyticus. Anal Chem 90:6124–6130PubMedCrossRefPubMedCentralGoogle Scholar
  30. Guo Z, Zhao X, Jiao S, Jiao Z, Zhang H, Zhu D (2018c) A turn-on biosensor-based aptamer-mediated carbon quantum dots nanoaggregate for acetamiprid detection in complex samples. Food Anal Methods 12:668–676Google Scholar
  31. Guo P, Yang W, Hu H, Wang Y, Li P (2019) Rapid detection of aflatoxin B1 by dummy template molecularly imprinted polymer capped CdTe quantum dots. Anal Bioanal Chem 411:2607. Scholar
  32. Gupta VK, Yola ML, Atar N (2014) A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol. Sens Actuators B Chem 194:79–85CrossRefGoogle Scholar
  33. Haddi Z, Mabrouk S, Bougrini M, Tahri K, Sghaier K, Barhoumi H, El Bari N, Maaref A, Jaffrezic-Renault N, Bouchikhi B (2014) E-nose and e-tongue combination for improved recognition of fruit juice samples. Food Chem 150:246–253PubMedCrossRefPubMedCentralGoogle Scholar
  34. Han KN, Choi JS, Kwon J (2016) Three-dimensional paper-based slip device for one-step point-of-care testing. Sci Rep 6:1–7CrossRefGoogle Scholar
  35. Hebbar VS, Javey A, Chen Y-Z, Kiriya D, Hettick M, Ota H, Fahad HM, Gao W, Shiraki H, Amani M, Chueh Y-L, Zhang C (2017) Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci Adv 3:e1602557PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hossain MZ, Maragos CM (2018) Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat. Biosens Bioelectron 101:245–252PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hu P, Zhou X, Wu Q (2014) A new nanosensor composed of laminated samarium borate and immobilized laccase for phenol determination. Nanoscale Res Lett 9:1–7CrossRefGoogle Scholar
  38. Hu J, Fu K, Bohn PW (2018a) Whole-cell Pseudomonas aeruginosa localized surface plasmon resonance aptasensor. Anal Chem 90:2326–2332PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hu L, Zhang Q, Gan X, Yin W, Fu W (2018b) Switchable fluorescence of MoS2 quantum dots: a multifunctional probe for sensing of chromium(VI), ascorbic acid, and alkaline phosphatase activity. Anal Bioanal Chem 410:7551–7557PubMedCrossRefGoogle Scholar
  40. Hu J, Jiang YZ, Tang M, Wu LL, Xie HY, Zhang ZL, Pang DW (2019) Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal Chem 91:1178–1184PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ikram F, Qayoom A, Aslam Z, Shah MR (2019) Epicatechin coated silver nanoparticles as highly selective nanosensor for the detection of Pb2+ in environmental samples. J Mol Liq 277:649–655CrossRefGoogle Scholar
  42. Ilkhani H, Farhad S (2018) A novel electrochemical DNA biosensor for Ebola virus detection. Anal Biochem 557:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  43. Islam S, Shukla S, Bajpai VK, Han YK, Huh YS, Ghosh A, Gandhi S (2019) Microfluidic-based graphene field effect transistor for femtomolar detection of chlorpyrifos. Sci Rep 9:1–7CrossRefGoogle Scholar
  44. Javidi M, Housaindokht MR, Verdian A, Razavizadeh BM (2018) Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples. Anal Chim Acta 1039:116–123PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jigyasa A, Rajput JK (2018) Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colorimetric detection of melamine in milk. Biosens Bioelectron 120:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kaur H, Shorie M (2019) Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Adv 1:2123. Scholar
  47. Kaur H, Shorie M, Sharma M, Ganguli AK, Sabherwal P (2017) Bridged rebar graphene functionalized aptasensor for pathogenic E. coli O78:K80:H11 detection. Biosens Bioelectron 98:486–493PubMedCrossRefPubMedCentralGoogle Scholar
  48. Khater M, de la Escosura-Muñiz A, Quesada-González D, Merkoçi A (2019) Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal Chim Acta 1046:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  49. Köhler H-R, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765PubMedCrossRefPubMedCentralGoogle Scholar
  50. Li H, Somerson J, Xia F, Plaxco KW (2018a) Electrochemical DNA-based sensors for molecular quality control: continuous, real-time melamine detection in flowing whole milk. Anal Chem 90:10641–10645PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li X, Jiao HF, Shi XZ, Sun A, Wang X, Chai J, Li DX, Chen J (2018b) Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens Bioelectron 99:268–273PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li D, Wang S, Wang L, Zhang H, Hu J (2019) A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Anal Bioanal Chem 411:2645. Scholar
  53. Lin ZT, Gu J, Li CH, Lee TR, Xie L, Chen S, Cao PY, Jiang S, Yuan Y, Hong X, Wang H, Wang D, Wang X, Jiang GB, Heon M, Wu T (2017) A nanoparticle-decorated biomolecule-responsive polymer enables robust signaling cascade for biosensing. Adv Mater 29:1–8Google Scholar
  54. Liu J, Zeng J, Tian Y, Zhou N (2018a) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182–189CrossRefGoogle Scholar
  55. Liu Y, Chen X, Wang M, Ma Q (2018b) A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for shiga toxin-producing: Escherichia coli detection. Green Chem 20:5520–5527CrossRefGoogle Scholar
  56. Lu Z, Chen X, Wang Y, Zheng X, Li CM (2014) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578CrossRefGoogle Scholar
  57. Madianos L, Tsekenis G, Skotadis E, Patsiouras L, Tsoukalas D (2018) A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens Bioelectron 101:268–274PubMedCrossRefPubMedCentralGoogle Scholar
  58. Malik M, Padhye P, Poddar P (2019) Down conversion luminescence-based nanosensor for label-free detection of explosives. ACS Omega 4:4259–4268PubMedPubMedCentralCrossRefGoogle Scholar
  59. Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J (2018) Rapid and label-free electrochemical DNA biosensor for detecting hepatitis a virus. Biosens Bioelectron 100:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  60. Masteri-Farahani M, Mosleh N (2019) Functionalization of graphene quantum dots with antimorphine: design of selective nanosensor for detection of morphine. Mater Lett 241:206–209CrossRefGoogle Scholar
  61. Mateo-Sagasta J, Marjani S, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  62. Mehrzad-Samarin M, Faridbod F, Dezfuli AS, Ganjali MR (2017) A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosens Bioelectron 92:618–623PubMedCrossRefPubMedCentralGoogle Scholar
  63. Memon AG, Zhou X, Xing Y, Wang R, Liu L, Khan M, He M (2019) Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8–17 DNAzyme. Front Environ Sci Eng 13:1–6CrossRefGoogle Scholar
  64. Miao Y, Gan N, Li T, Zhang H, Cao Y, Jiang Q (2015) A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification. Sens Actuators B Chem 220:679–687CrossRefGoogle Scholar
  65. Mortazavi SS, Farmany A (2017) MWCNTs@rubeanic acid nanosensor for ultra sensitive quantification of bismuth in groundwater and soil. Russ J Electrochem 53:223–226CrossRefGoogle Scholar
  66. Mousavi Nodoushan S, Nasirizadeh N, Amani J, Halabian R, Imani Fooladi AA (2019) An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron 127:221–228PubMedCrossRefPubMedCentralGoogle Scholar
  67. Muhammad N, Rahman A, Younis MA, Subhani Q, Shehzad K, Cui H, Zhu Y (2018) Porous SnO2 nanoparticles based ion chromatographic determination of non-fluorescent antibiotic (chloramphenicol) in complex samples. Sci Rep 8:1–11CrossRefGoogle Scholar
  68. Niu X, He Y, Li X, Zhao H, Pan J, Qiu F, Lan M (2019) A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids. Sens Actuators B Chem 281:445–452CrossRefGoogle Scholar
  69. Peng J, Yin W, Shi J, Jin X, Ni G (2019) Magnesium and nitrogen co-doped carbon dots as fluorescent probes for quenchometric determination of paraoxon using pralidoxime as a linker. Microchim Acta 186:24CrossRefGoogle Scholar
  70. Prasad BB, Jauhari D (2015) A dual-template biomimetic molecularly imprinted dendrimer-based piezoelectric sensor for ultratrace analysis of organochlorine pesticides. Sens Actuators B Chem 207:542–551CrossRefGoogle Scholar
  71. Priyanka, Shorie M, Bhalla V, Pathania P, Raman SC (2014) Nanobioprobe mediated DNA aptamers for explosive detection. Chem Commun 50:1080–1082CrossRefGoogle Scholar
  72. Qi J, Li B, Wang X, Fu L, Luo L, Chen L (2018) Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique. Anal Chem 90:11827–11834PubMedCrossRefPubMedCentralGoogle Scholar
  73. Qian J, Wang K, Wang C, Ren C, Liu Q, Hao N, Wang K (2017) Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of CdTe quantum dots-based hybrid probe. Sens Actuators B Chem 241:1153–1160CrossRefGoogle Scholar
  74. Qiu Q, Chen H, Ying S, Sharif S, You Z, Wang Y, Ying Y (2019) Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Microchim Acta 186:93. Scholar
  75. Rahbar N, Salehnezhad Z, Hatamie A, Babapour A (2018) Graphitic carbon nitride nanosheets as a fluorescent probe for chromium speciation. Microchim Acta 185:101CrossRefGoogle Scholar
  76. Ren X, Cheshari EC, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:242CrossRefGoogle Scholar
  77. Saberi Z, Rezaei B (2019) Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Microchim Acta 186:273. Scholar
  78. Sadeghi R, Karimi-Maleh H, Khalilzadeh MA, Beitollahi H, Ranjbarha Z, Zanousi MBP (2013) A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor. Environ Sci Pollut Res 20:6584–6593CrossRefGoogle Scholar
  79. Saha A, Neogy S, Rao DRM, Deb SB, Saxena MK, Tomar BS (2019) Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles. Microchim Acta 186:183CrossRefGoogle Scholar
  80. Sang S, Guo X, Liu R, Wang J, Guo J, Zhang Y, Yuan Z, Zhang W (2018) A novel magnetoelastic nanobiosensor for highly sensitive detection of atrazine. Nanoscale Res Lett 13:414PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shams S, Bakhshi B, Tohidi Moghadam T, Behmanesh M (2019) A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnol 17:43CrossRefGoogle Scholar
  82. Shi Q, Huang J, Sun Y, Deng R, Teng M, Li Q, Yang Y, Hu X, Zhang Z, Zhang G (2018) A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185:84CrossRefGoogle Scholar
  83. Shorie M, Kaur H (2018) Microtitre plate based cell-SELEX method. Bio-Protocol 8:1–9CrossRefGoogle Scholar
  84. Shorie M, Kaur H, Chadha G, Singh K, Sabherwal P (2019) Graphitic carbon nitride QDs impregnated biocompatible agarose cartridge for removal of heavy metals from contaminated water samples. J Hazard Mater 367:629–638PubMedCrossRefPubMedCentralGoogle Scholar
  85. Song D, Yang R, Fang S, Liu Y, Long F, Zhu A (2018) SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim Acta 185:491CrossRefGoogle Scholar
  86. Sun A, Chai J, Xiao T, Shi X, Li X, Zhao Q, Li D, Chen J (2018a) Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sens Actuators B Chem 258:408–414CrossRefGoogle Scholar
  87. Sun J, Gan T, Zhai R, Fu W, Zhang M (2018b) Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles. Ionics (Kiel) 24:2465–2472CrossRefGoogle Scholar
  88. Sun H, Mei Q, Shikha S, Liu J, Zhang J, Zhang Y (2019a) White-light emissive upconversion nanoparticles for visual and colorimetric determination of the pesticide thiram. Microchim Acta 186:106CrossRefGoogle Scholar
  89. Sun Y, Duan N, Ma P, Liang Y, Zhu X, Wang Z (2019b) Colorimetric aptasensor based on truncated aptamer and trivalent dnazyme for Vibrio parahemolyticus determination. J Agric Food Chem 67:2313–2320PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tan F, Xie X, Xu A, Deng K, Zeng Y, Yang X, Huang H (2019) Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B. Talanta 194:634–642PubMedCrossRefPubMedCentralGoogle Scholar
  91. Tancharoen C, Sukjee W, Thepparit C, Jaimipuk T, Auewarakul P, Thitithanyanont A, Sangma C (2019) Electrochemical biosensor based on surface imprinting for zika virus detection in serum. ACS Sensors 4:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  92. Teymoori N, Raoof JB, Khalilzadeh MA, Ojani R (2018) An electrochemical sensor based on CuO nanoparticle for simultaneous determination of hydrazine and bisphenol a. J Iran Chem Soc 15:2271–2279CrossRefGoogle Scholar
  93. Tomer VK, Singh K, Kaur H, Shorie M, Sabherwal P (2017) Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens Actuators B Chem 253:703–713CrossRefGoogle Scholar
  94. Tortolini C, Bollella P, Antiochia R, Favero G, Mazzei F (2016) Inhibition-based biosensor for atrazine detection. Sens Actuators B Chem 224:552–558CrossRefGoogle Scholar
  95. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefPubMedCentralGoogle Scholar
  96. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  97. Ul Ain N, Anis I, Ahmed F, Shah MR, Parveen S, Faizi S, Ahmed S (2018) Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sens Actuators B Chem 265:617–624CrossRefGoogle Scholar
  98. Wagner S, Bell J, Biyikal M, Gawlitza K, Rurack K (2018) Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens Bioelectron 99:244–250PubMedCrossRefPubMedCentralGoogle Scholar
  99. Wang Y, Fry HC, Skinner GE, Schill KM, Duncan TV (2017) Detection and quantification of biologically active botulinum neurotoxin serotypes A and B using a förster resonance energy transfer-based quantum dot nanobiosensor. ACS Appl Mater Interfaces 9:31446–31457PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wang Q, Li S, Li J (2018a) A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Anal Bioanal Chem 410:5165–5172PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wang Y, Yue Q, Tao L, Zhang C, Li CZ (2018b) Fluorometric determination of hydroquinone by using blue emitting N/S/P-codoped carbon dots. Microchim Acta 185:550CrossRefGoogle Scholar
  102. World Health Organisation (2011) World health report 2010. World Health Organisation, GenevaGoogle Scholar
  103. World Health Organisation (2015) Estimates of the global burden of foodborne diseases. World Health Organisation, GenevaGoogle Scholar
  104. Wujcik EK, Duirk SE, Chase GG, Monty CN (2016) A visible colorimetric sensor based on nanoporous polypropylene fiber membranes for the determination of trihalomethanes in treated drinking water. Sens Actuators B Chem 223:1–8CrossRefGoogle Scholar
  105. Xiang Q, Huang J, Huang H, Mao W, Ye Z (2018a) A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv 8:1820–1825CrossRefGoogle Scholar
  106. Xiang Y, Camarada MB, Wen Y, Wu H, Chen J, Li M, Liao X (2018b) Simple voltammetric analyses of ochratoxin a in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochim Acta 282:490–498CrossRefGoogle Scholar
  107. Xie X, Tan F, Xu A, Deng K, Zeng Y, Huang H (2019) UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sens Actuators B Chem 279:289–297CrossRefGoogle Scholar
  108. Xu X, Ma X, Wang H, Wang Z (2018a) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185:325CrossRefGoogle Scholar
  109. Xu Z, Bi X, Huang Y, Che Z, Chen X, Fu M, Tian H, Yang S (2018b) Sensitive colorimetric detection of Salmonella enteric serovar typhimurium based on a gold nanoparticle conjugated bifunctional oligonucleotide probe and aptamer. J Food Saf 38:e12482CrossRefGoogle Scholar
  110. Zhang CH, Liu LW, Liang P, Tang LJ, Yu RQ, Jiang JH (2016) Plasmon coupling enhanced raman scattering nanobeacon for single-step, ultrasensitive detection of cholera toxin. Anal Chem 88:7447–7452PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zhang P, Lyu Z, Viktorova J, Offenhäusser A, Feng L, Mayer D (2018) Nanoparticle stripe sensor for highly sensitive and selective detection of mercury ions. Biosens Bioelectron 117:450–456PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X (2019) Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst 144:1282–1291PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2018) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Microchim Acta 185:30CrossRefGoogle Scholar
  114. Zou D, Jin L, Wu B, Hu L, Chen X, Huang G, Zhang J (2019) Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance. Int Dairy J 91:82–88CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistrySchool of Basics and Applied Sciences, Maharaja Agrasen UniversityBaddiIndia

Personalised recommendations