Ecotoxicity of Nanomaterials in Aquatic Environment

  • Murat OzmenEmail author
  • Abbas Gungordu
  • Hikmet Geckil
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology is a revolutionary multidisciplinary field spanning a wide spectrum of basic and applied sciences for production and application of nano-sized materials for innovative solutions. Although research in this field is relatively new, living organisms have been running on such nanomolecules as the main constituents (proteins, nucleic acids) of their cells for billions of years since their advent on earth. In this context, most engineered nanomaterials can readily bind to and incorporate into cells and integrate with their constituents, given their physicochemical characteristics and bioavailability. Thus, discharging such materials into the environment may pose detrimental effect on the health of organisms and environment. Today, there is an ever-increasing concern about synthetic nanomaterials given the result of many ecotoxicological studies reporting their adverse effects. In this chapter, in the light of recent studies, we discussed the toxicological properties and potential risks of nanomaterials in terms of factors contributing to their toxicology, bioavailability, and accumulation in aquatic organisms and in the environment.


Bioaccumulation Biomarkers Cellular effects Nanocomposites Nanomaterials Photocatalysis Risk assessment Toxicological properties 


  1. Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23:754–760PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16PubMedCrossRefGoogle Scholar
  3. Almansour M, Sajti L, Melhim W, Jarrar BM (2016) Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity. Ultrastruct Pathol 40:92–100PubMedCrossRefGoogle Scholar
  4. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165PubMedCrossRefGoogle Scholar
  5. Asztemborska M, Jakubiak M, Ksiazyk M, Steborowski R, Polkowska-Motrenko H, Bystrzejewska-Piotrowska G (2014) Silver nanoparticle accumulation by aquatic organisms - neutron activation as a tool for the environmental fate of nanoparticles tracing. Nukleonika 59:169–173CrossRefGoogle Scholar
  6. Asztemborska M, Jakubiak M, Steborowski R, Chajduk E, Bystrzejewska-Piotrowska G (2018) Titanium dioxide nanoparticle circulation in an aquatic ecosystem. Water Air Soil Poll 229:208CrossRefGoogle Scholar
  7. Ates M, Arslan Z, Demir V, Daniels J, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30:119–128PubMedCrossRefGoogle Scholar
  8. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. DOI: Scholar
  9. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:
  10. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. doi:
  11. Bacchetta R, Santo N, Marelli M, Nosengo G, Tremolada P (2017) Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Environ Res 152:128–140PubMedCrossRefGoogle Scholar
  12. Barrick A, Chatel A, Bruneau M, Mouneyrac C (2017) The role of high-throughput screening in ecotoxicology and engineered nanomaterials. Environ Toxicol Chem 36:1704–1714PubMedCrossRefGoogle Scholar
  13. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862PubMedCrossRefGoogle Scholar
  14. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218–4244PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bennat C, Muller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22:271–283PubMedCrossRefGoogle Scholar
  16. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Bhatia S (ed) Natural polymer drug delivery systems: nanoparticles, plants, and algae. Springer, Cham, pp 33–93CrossRefGoogle Scholar
  17. Birhanli A, Emre FB, Sayilkan F, Gungordu A (2014) Effect of nanosized TiO2 particles on the development of Xenopus laevis embryos. Turk J Biol 38:283–288CrossRefGoogle Scholar
  18. Bondarenko OM, Heinlaan M, Sihtmäe M, Ivask A, Kurvet I, Joonas E, Jemec A, Mannerström M, Heinonen T, Rekulapelly R, Singh S, Zou J, Pyykkö I, Drobne D, Kahru A (2016) Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology 10:1229–1242PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bouallegui Y, Ben Younes R, Oueslati R, Sheehan D (2018) Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: a redox proteomic investigation. Aquat Toxicol 200:21–27PubMedCrossRefGoogle Scholar
  20. Braz-Mota S, Campos DF, MacCormack TJ, Duarte RM, Val AL, Almeida-Val VMF (2018) Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axeirodi). Sci Total Environ 630:1168–1180PubMedCrossRefGoogle Scholar
  21. Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Bérard JB, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174PubMedCrossRefGoogle Scholar
  22. Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R (2016) Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol 61:2185–2196CrossRefGoogle Scholar
  23. Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Del 7:479–495CrossRefGoogle Scholar
  24. Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN, Ropstad E, Gutleb AC (2018) Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Sci Total Environ 610-611:972–982PubMedCrossRefGoogle Scholar
  25. Cao G, Wang Y (2011) Nanostructures and Nanomaterials: synthesis, properties, and applications. World scientific series in nanoscience and nanotechnology: Vol. 2. World Scientific, Singapore, p 596Google Scholar
  26. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619PubMedCrossRefGoogle Scholar
  27. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934PubMedPubMedCentralCrossRefGoogle Scholar
  28. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chatel A, Lievre C, Barrick A, Bruneau M, Mouneyrac C (2018) Transcriptomic approach: a promising tool for rapid screening nanomaterial-mediated toxicity in the marine bivalve Mytilus edulis – application to copper oxide nanoparticles. Comp Biochem Physiol C 205:26–33Google Scholar
  30. Chen BH, Inbaraj BS (2018) Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 38:1003–1024PubMedCrossRefGoogle Scholar
  31. Chen M, Yin J, Liang Y, Yuan S, Wang F, Song M, Wang H (2016) Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquat Toxicol 174:54–60PubMedCrossRefGoogle Scholar
  32. Chen F, Li G, Zhao ER, Li J, Hableel G, Lemaster JE, Bai Y, Sen GL, Jokerst JV (2018) Cellular toxicity of silicon carbide nanomaterials as a function of morphology. Biomaterials 179:60–70PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva De Assis HC, Schnitzler MC, Schnitzler DC, Carneiro PG, Cestari MM (2018) Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicol Environ Saf 150:215–223PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cohignac V, Landry MJ, Ridoux A, Pinault M, Annangi B, Gerdil A, Herlin-Boime N, Mayne M, Haruta M, Codogno P, Boczkowski J, Pairon JC, Lanone S (2018) Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy 14:1323–1334PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cong Y, Jin F, Wang J, Mu J (2017) The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquat Toxicol 185:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M (2015) Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol 49:2587–2593PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dayal N, Singh D, Patil P, Thakur M, Vanage G, Joshi DS (2017) Effect of bioaccumulation of gold nanoparticles on ovarian morphology of female zebrafish (Danio rerio). World J Pathol 6:1–12Google Scholar
  38. Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP (2015) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dervin S, Murphy J, Aviles R, Pillai SC, Garvey M (2018) An in vitro cytotoxicity assessment of graphene nanosheets on alveolar cells. Appl Surf Sci 434:1274–1284CrossRefGoogle Scholar
  40. Dobrochna A, Jerzy S, Teresa O, Magda F, Malgorzata R, Yuichiro M, Kacper M (2018) Effect of copper and cilver nanoparticles on trunk muscles in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Turk J Fish Aquat Sci 18:781–788CrossRefGoogle Scholar
  41. Dong ZH, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93CrossRefGoogle Scholar
  42. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliver Rev 64:129–137CrossRefGoogle Scholar
  43. Faggio C, Tsarpali V, Dailianis S (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Sci Total Environ 636:220–229PubMedCrossRefPubMedCentralGoogle Scholar
  44. Favi PM, Gao M, Johana Sepulveda Arango L, Ospina SP, Morales M, Pavon JJ, Webster TJ (2015) Shape and surface effects on the cytotoxicity of nanoparticles: gold nanospheres versus gold nanostars. J Biomed Mater Res A 103:3449–3462PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ferreira JRF, Barros DM, Geracitano LA, Fillmann G, Fossa CE, De Almeida EA, Prado MC, Neves BRA, Pinheiro MVB, Monserrat JM (2012) Influence of in vitro exposure to fullerene C60 in redox state and lipid peroxidation of brain and gills of carp Cyprinus carpio (Cyprinidae). Environ Toxicol Chem 31:961–967Google Scholar
  46. Fkiri A, Sellami B, Selmi A, Khazri A, Saidani W, Imen B, Sheehan D, Hamouda B, Smiri LS (2018) Gold octahedra nanoparticles (Au_0.03 and Au_0.045): synthesis and impact on marine clams Ruditapes decussatus. Aquat Toxicol 202:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  47. Forbes VE, Forbes TL (1994) Ecotoxicology in theory and practice. Chapman and Hall, LondonGoogle Scholar
  48. Forouhar Vajargah M, Mohamadi Yalsuyi A, Hedayati A, Faggio C (2018) Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc Res Tech 81:724–729PubMedCrossRefPubMedCentralGoogle Scholar
  49. Freixa A, Acuna V, Sanchis J, Farre M, Barcelo D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337PubMedCrossRefPubMedCentralGoogle Scholar
  50. Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gatos KG, Leong YW (2017) Classification of nanomaterialsand nanocomposites. In: Parameswaranpillai J, Hameed N, Kurian T (eds) Nanocomposite materials: synthesis, properties and applications. CRC Press, Boca RatonGoogle Scholar
  52. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255PubMedPubMedCentralCrossRefGoogle Scholar
  53. Genix AC, Oberdisse J (2018) Nanoparticle self-assembly: from interactions in suspension to polymer nanocomposites. Soft Matter 14:5161–5179PubMedCrossRefPubMedCentralGoogle Scholar
  54. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362PubMedCrossRefGoogle Scholar
  56. Gomes T, Pereira CG, Cardoso C, Sousa VS, Teixeira MR, Pinheiro JP, Bebianno MJ (2014) Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar Environ Res 101:208–214PubMedCrossRefGoogle Scholar
  57. Guigas C, Walz E, Graf V, Heller KJ, Greiner R (2017) Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation. J Nanopart Res 19(207):1–14Google Scholar
  58. Gupta YR, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y (2016) Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): biochemical, histological and proteomic approaches. Aquac Fish 1:15–23CrossRefGoogle Scholar
  59. Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish--a mechanistic analysis. Ecotoxicology 17:396–409PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hartmann N, Skjolding L, Hansen S, Baun A, Kjølholt J, Gottschalk F (2014) Environmental fate and behaviour of nanomaterials: new knowledge on important transformation processes. Environmental Project No. Danish Environmental Protection Agency, Copenhagen, p 1594. Scholar
  61. Haynes VN, Ward JE, Russell BJ, Agrios AG (2017) Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms - current knowledge and suggestions for future research. Aquat Toxicol 185:138–148PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2018) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China) 75:40–53CrossRefGoogle Scholar
  63. Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson KA, Lynch I, Blasco J, Sheehan D (2014) Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:289–299PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hu J, Zhang Z, Zhang C, Liu S, Zhang H, Li D, Zhao J, Han Z, Liu X, Pan J, Huang W, Zheng M (2018a) Al2O3 nanoparticle impact on the toxic effect of Pb on the marine microalga Isochrysis galbana. Ecotoxicol Environ Saf 161:92–98PubMedCrossRefGoogle Scholar
  65. Hu PP, Zhang XX, Li YX, Pichan C, Chen Z (2018b) Molecular interactions between silver nanoparticles and model cell membranes. Top Catal 61:1148–1162CrossRefGoogle Scholar
  66. Huang X, Liu Z, Xie Z, Dupont S, Huang W, Wu F, Kong H, Liu L, Sui Y, Lin D, Lu W, Hu M, Wang Y (2018) Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. Mar Environ Res 137:49–59PubMedCrossRefGoogle Scholar
  67. Indeglia PA, Georgieva AT, Krishna VB, Martyniuk CJ, Bonzongo JCJ (2018) Toxicity of functionalized fullerene and fullerene synthesis chemicals. Chemosphere 207:1–9PubMedCrossRefGoogle Scholar
  68. Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356PubMedPubMedCentralCrossRefGoogle Scholar
  69. Johari SA, Kalbassi MR, Soltani M, Yu IJ (2013) Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci 12:76–95Google Scholar
  70. Joo NY, Lee J, Kim SJ, Hong S, Park HM, Yun WS, Yoon M, Song NW (2013) Preparation of an aqueous suspension of stabilized TiO2 nanoparticles in primary particle form. J Nanosci Nanotechnol 13:6153–6159PubMedCrossRefGoogle Scholar
  71. Joubert Y, Pan JF, Buffet PE, Pilet P, Gilliland D, Valsami-Jones E, Mouneyrac C, Amiard-Triquet C (2013) Subcellular localization of gold nanoparticles in the estuarine bivalve Scrobicularia plana after exposure through the water. Gold Bull 46:47–56CrossRefGoogle Scholar
  72. Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Persp 114:1697–1702CrossRefGoogle Scholar
  73. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967PubMedCrossRefGoogle Scholar
  74. Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33:481–492PubMedCrossRefGoogle Scholar
  75. Khan MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A (2015) Toxicity of silver nanoparticles in fish: a critical review. J Bio Environ Sci 6:211–227Google Scholar
  76. Khan I, Saeed K, Khan I (2017a) Nanoparticles: properties, applications and toxicities. Arab J Chem. Scholar
  77. Khan MS, Qureshi NA, Jabeen F, Asghar MS, Shakeel M, Fakhar-e-Alam M (2017b) Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the Labeo rohita. Biol Trace Elem Res 176:416–428PubMedCrossRefGoogle Scholar
  78. Khan MS, Qureshi NA, Jabeen F, Shakeel M, Asghar MS (2018) Assessment of waterborne amine-coated silver nanoparticle (Ag-NP)-induced toxicity in Labeo rohita by histological and hematological hrofiles. Biol Trace Elem Res 182:130–139PubMedCrossRefGoogle Scholar
  79. Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J (2009) Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. Environ Pollut 157:1152–1156PubMedCrossRefGoogle Scholar
  80. Klaunig JE, Kamendulis LM (2008) Chemical Carcinogenesis. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 7th edn. McGraw Hill, New York, pp 329–379Google Scholar
  81. Klingelfus T, Lirola JR, Oya Silva LF, Disner GR, Vicentini M, Nadaline MJB, Robles JCZ, Trein LM, Voigt CL, Silva de Assis HC, Mela M, Leme DM, Cestari MM (2017) Acute and long-term effects of trophic exposure to silver nanospheres in the central nervous system of a neotropical fish Hoplias intermedius. Neurotoxicology 63:146–154PubMedCrossRefGoogle Scholar
  82. Koser J, Engelke M, Hoppe M, Nogowski A, Filser J, Thoming J (2017) Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media. Environ Sci Nano 4:1470–1483CrossRefGoogle Scholar
  83. Krysanov EY, Pavlov DS, Demidova TB, Dgebuadze YY (2010) Effect of nanoparticles on aquatic organisms. Biol Bull 37:406–412CrossRefGoogle Scholar
  84. Kteeba SM, El-Adawi HI, El-Rayis OA, El-Ghobashy AE, Schuld JL, Svoboda KR, Guo L (2017) Zinc oxide nanoparticle toxicity in embryonic zebrafish: mitigation with different natural organic matter. Environ Pollut 230:1125–1140PubMedCrossRefGoogle Scholar
  85. Lajmanovich RC, Peltzer PM, Martinuzzi CS, Attademo AM, Colussi CL, Basso A (2018) Acute toxicity of colloidal silicon dioxide nanoparticles on amphibian larvae: emerging environmental concern. Int J Environ Res 12:269–278CrossRefGoogle Scholar
  86. Larbi F, Garcia A, del Valle LJ, Hamou A, Puiggali J, Belgacem N, Bras J (2018) Comparison of nanocrystals and nanofibers produced from shrimp shell alpha-chitin: from energy production to material cytotoxicity and Pickering emulsion properties. Carbohyd Polym 196:385–397CrossRefGoogle Scholar
  87. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330PubMedCrossRefGoogle Scholar
  88. Liu W, Long Y, Yin N, Zhao X, Sun C, Zhou Q, Jiang G (2016) Toxicity of engineered nanoparticles to fish. In: Xing B, Vecitis CD, Senesi N (eds) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity, 1st edn. John Wiley and Sons, Hoboken, pp 347–366CrossRefGoogle Scholar
  89. Liu YX, Yan ZH, Xia J, Wang K, Ling XC, Yan B (2017) Potential toxicity in crucian carp following exposure to metallic nanoparticles of copper, chromium, and their mixtures: a comparative study. Pol J Environ Stud 26:2085–2094CrossRefGoogle Scholar
  90. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP (2013) Molecular Cell Biology, 7th edn. W. H. Freeman, New YorkGoogle Scholar
  91. Luo Z, Wang Z, Yan Y, Li J, Yan C, Xing B (2018) Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. Environ Pollut 238:631–637PubMedCrossRefGoogle Scholar
  92. Lv XH, Huang B, Zhu X, Jiang Y, Chen B, Tao Y, Zhou J, Cai Z (2017) Mechanisms underlying the acute toxicity of fullerene to Daphnia magna: energy acquisition restriction and oxidative stress. Water Res 123:696–703PubMedCrossRefGoogle Scholar
  93. Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res 773:134–160PubMedCrossRefGoogle Scholar
  94. Mallikarjuna K, Kim H (2018) Synthesis of shape and size-dependent CuAg bimetallic dumbbell structures for organic pollutant hydrogenation. Phys E 102:44–49CrossRefGoogle Scholar
  95. Martinez DST, Franchi LP, Ferreira CM, Filho AGS, Alves OL, Takahashi CS (2014) Carbon nanotubes: from synthesis to genotoxicity. In: Durán N, Guterres S, Alves OL (eds) Nanotoxicology, materials, methodologies, and assessments. Springer, New York, pp 125–152CrossRefGoogle Scholar
  96. Mendez N, Liberman A, Corbeil J, Barback C, Viveros R, Wang J, Wang-Rodriguez J, Blair SL, Mattrey R, Vera D, Trogler W, Kummel AC (2017) Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells. Nanomed-Nanotechnol 13:933–942CrossRefGoogle Scholar
  97. Minetto D, Volpi Ghirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: an overview. Environ Int 92-93:189–201PubMedCrossRefGoogle Scholar
  98. Miranda RR, Damaso da Silveira AL, de Jesus IP, Grötzner SR, Voigt CL, Campos SX, Garcia JR, Randi MA, Ribeiro CA, Filipak Neto F (2016) Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ Sci Pollut R 23:5179–5188CrossRefGoogle Scholar
  99. Montagner A, Bosi S, Tenori E, Bidussi M, Alshatwi AA, Tretiach M, Prato M, Syrgiannis Z (2017) Ecotoxicological effects of graphene-based materials. 2D Mater 4:012001CrossRefGoogle Scholar
  100. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976PubMedCrossRefGoogle Scholar
  101. Mukherjee K, Acharya K (2018) Toxicological effect of metal oxide nanoparticles on soil and aquatic habitats. Arch Environ Contam Toxicol 75:175–186PubMedCrossRefGoogle Scholar
  102. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  103. Ng CT, Tang FM, Li JJ, Ong C, Yung LL, Bay BH (2015) Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat Rec (Hoboken) 298:418–427CrossRefGoogle Scholar
  104. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062PubMedPubMedCentralCrossRefGoogle Scholar
  105. Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(S1):51–63PubMedPubMedCentralGoogle Scholar
  106. Oh WK, Kim S, Choi M, Kim C, Jeong YS, Cho BR, Hahn JS, Jang J (2010) Cellular uptake, cytotoxicity, and innate immune response of silica - titania hollow nanoparticles based on size and surface functionality. ACS Nano 4:5301–5313PubMedCrossRefGoogle Scholar
  107. Ozmen M, Gungordu A, Erdemoglu S, Ozmen N, Asilturk M (2015) Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. Aquat Toxicol 165:144–153PubMedCrossRefGoogle Scholar
  108. Ozmen N, Erdemoglu S, Gungordu A, Asilturk M, Turhan DO, Akgeyik E, Harper SL, Ozmen M (2018) Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity. Environ Sci Pollut Res 25:29493–29504CrossRefGoogle Scholar
  109. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817PubMedCrossRefGoogle Scholar
  110. Perez S, Farre M, Barcelo D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trac-Trend Anal Chem 28:820–832CrossRefGoogle Scholar
  111. Petersen SJ (2017) Silver nanoparticle fate and accumulation in the aquatic food web of stream microcosms. Master Thesis. Georgia Southern University, USAGoogle Scholar
  112. Petersen EJ, Huang Q, Weber WJ (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pikula KS, Zakharenko AM, Chaika VV, Vedyagin AA, Orlova TY, Mishakov IV, Kuznetsov VL, Park S, Renieri EA, Kahru A, Tsatsakis AM, Golokhvast KS (2018) Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae Heterosigma akashiwo. Environ Res 166:473–480PubMedCrossRefGoogle Scholar
  114. Prasad R (2019) Plant Nanobionics: Approaches in Nanoparticles Biosynthesis and Toxicity. Springer International Publishing (ISBN 978-3-030-16379-2)
  115. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126CrossRefGoogle Scholar
  116. Rocha TL, Gomes T, Mestre NC, Cardoso C, Bebianno MJ (2015a) Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. Aquat Toxicol 169:10–18PubMedCrossRefGoogle Scholar
  117. Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015b) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88PubMedCrossRefGoogle Scholar
  118. Rossbach LM, Shaw BJ, Piegza D, Vevers WF, Atfield AJ, Handy RD (2017) Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas). Aquat Toxicol 191:245–255PubMedCrossRefGoogle Scholar
  119. Ruenraroengsak P, Tetley TD (2015) Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part Fibre Toxicol 12(19):1–20Google Scholar
  120. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int 22:4122–4143PubMedCrossRefGoogle Scholar
  121. Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746PubMedCrossRefGoogle Scholar
  122. Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ (2016) Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem 35:1055–1067PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Homoagglomeration and heteroagglomeration of TiO2, in nanoparticle and bulk form, onto freshwater and marine microalgae. Sci Total Environ 592:403–411PubMedCrossRefGoogle Scholar
  124. Sendra M, Volland M, Balbi T, Fabbri R, Yeste MP, Gatica JM, Canesi L, Blasco J (2018) Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: relevance of zeta potential, shape and biocorona formation. Aquat Toxicol 200:13–20PubMedCrossRefGoogle Scholar
  125. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5CrossRefGoogle Scholar
  126. Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment – a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1485–1495PubMedCrossRefGoogle Scholar
  127. Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097PubMedCrossRefGoogle Scholar
  128. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu XF (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468:968–976PubMedCrossRefGoogle Scholar
  129. Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 2015:893049PubMedPubMedCentralGoogle Scholar
  130. Souza JP, Baretta JF, Santos F, Paino IMM, Zucolotto V (2017) Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquat Toxicol 186:11–18PubMedCrossRefGoogle Scholar
  131. Souza JP, Venturini FP, Santos F, Zucolotto V (2018) Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere 190:218–224PubMedCrossRefGoogle Scholar
  132. Strambeanu N, Demetrovici L, Dragos D (2015) Natural sources of nanoparticles. In: Lungu M, Neculae A, Bunoiu M, Biris C (eds) Nanoparticles’ promises and risks. Springer International Publishing, Cham, Switzerland, pp 9–19Google Scholar
  133. Taju G, Majeed SA, Nambi KSN, Hameed ASS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Phys C 161:41–52Google Scholar
  134. Thit A, Skjolding LM, Selck H, Sturve J (2017) Effects of copper oxide nanoparticles and copper ions to zebrafish (Danio rerio) cells, embryos and fry. Toxicol In Vitro 45:89–100PubMedCrossRefGoogle Scholar
  135. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Persp 111:1202–1208CrossRefGoogle Scholar
  136. Tissera ND, Wijesena RN, Sandaruwan CS, de Silva RM, de Alwis A, de Silva KMN (2018) Photocatalytic activity of ZnO nanoparticle encapsulated poly(acrylonitrile) nanofibers. Material Chem Phys 204:195–206CrossRefGoogle Scholar
  137. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118:160–170PubMedCrossRefGoogle Scholar
  138. Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12:129–142PubMedCrossRefGoogle Scholar
  139. Valerio-Garcia RC, Carbajal-Hernandez AL, Martinez-Ruiz EB, Jarquin-Diaz VH, Haro-Perez C, Martinez-Jeronimo F (2017) Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci Total Environ 583:308–318PubMedCrossRefGoogle Scholar
  140. van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149PubMedCrossRefGoogle Scholar
  141. Walker CH, Hopkin SP, Sibly RM, Peakall DB (1996) Principles of ecotoxicology. Taylor and Francis, LondonGoogle Scholar
  142. Wang SG, Lu WT, Tovmachenko O, Rai US, Yu HT, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149PubMedPubMedCentralCrossRefGoogle Scholar
  143. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yeo MK, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Kor Chem Soc 29:1179–1184CrossRefGoogle Scholar
  145. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicological considerations of clinically applicable nanoparticles. Nano Today 6:585–607PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yu Q, Wang H, Peng Q, Li Y, Liu Z, Li M (2017) Different toxicity of anatase and rutile TiO2 nanoparticles on macrophages: involvement of difference in affinity to proteins and phospholipids. J Hazard Mater 335:125–134PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yu Z, Hao R, Zhang L, Zhu Y (2018) Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 156:75–86PubMedCrossRefGoogle Scholar
  148. Yue Y, Li X, Sigg L, Suter MJ, Pillai S, Behra R, Schirmer K (2017) Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnol 15:16CrossRefGoogle Scholar
  149. Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–291PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhornik EV, Baranova LA, Drozd ES, Sudas MS, Chau NH, Buu NQ, Dung TT, Chizhik SA, Volotovskiĭ ID (2014) Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface. Biofizika 59:466–473PubMedGoogle Scholar
  151. Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62S:S5–S9CrossRefGoogle Scholar
  152. Zhu XS, Zhu L, Duan ZH, Qi RQ, Li Y, Lang YP (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Heal A 43:278–284CrossRefGoogle Scholar
  153. Zhu XS, Chang Y, Chen YS (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of BiologyInonu UniversityMalatyaTurkey
  2. 2.Department of Molecular Biology and GeneticsInonu UniversityMalatyaTurkey

Personalised recommendations