3DPlasticToolkit: Plasticity for 3D User Interfaces

  • Jérémy Lacoche
  • Thierry DuvalEmail author
  • Bruno Arnaldi
  • Eric Maisel
  • Jérôme Royan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11883)


The goal of plasticity is to ensure usability continuity whatever the context of use. This context must be modeled into the system and possibly taken into account to adapt the final application. The difficulty to handle plasticity for 3D applications comes from the lack of solutions for developers and designers to model and take these constraints into account. This paper introduces new models designed to deal with plasticity for Virtual Reality (VR) and Augmented Reality (AR). These models are implemented in a software solution: 3DPlasticToolkit. It aims to provide a solution for developing 3D applications that can automatically fit any context of use. This context of use includes a set of 3D hardware and environmental constraints, such as user preferences and available interaction devices. 3DPlasticToolkit includes tools for modeling this context and for creating application components independently from it. We propose an adaptation engine based on a scoring algorithm to dynamically create the most suited 3D user interfaces according to the context of use at runtime. We use a furniture planning scenario to show how these adaptations can impact interactions and content presentation.


Plasticity 3D user interfaces Virtual reality 


  1. 1.
    Avouac, P.A., Lalanda, P., Nigay, L.: Autonomic management of multimodal interaction: DynaMo in action. In: EICS 2012, Copenhagen, Denmark, pp. 35–44. ACM, New York (2012)Google Scholar
  2. 2.
    Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City (2004)Google Scholar
  3. 3.
    Calvary, G., et al.: The CAMELEON Reference Framework. Deliverable D1.1 (2002)Google Scholar
  4. 4.
    Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a new generation of widgets for supporting software plasticity: the “Comet”. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004. LNCS, vol. 3425, pp. 306–324. Springer, Heidelberg (2005). Scholar
  5. 5.
    Claude, G., Gouranton, V., Bouville Berthelot, R., Arnaldi, B.: #SEVEN, a sensor effector based scenarios model for driving collaborative virtual environment. In: ICAT-EGVE, December 2014Google Scholar
  6. 6.
    Coutaz, J.: PAC, on object oriented model for dialog design. In: Interact 1987, 6 p. (1987)CrossRefGoogle Scholar
  7. 7.
    Duval, T., Blouin, A., Jézéquel, J.M.: When model driven engineering meets virtual reality: feedback from application to the collaviz framework. In: 7th Workshop SEARIS (2014)Google Scholar
  8. 8.
    Gonzalez-Calleros, J., Vanderdonckt, J., Muoz-Arteaga, J.: A structured approach to support 3D user interface development. In: Second International Conferences on Advances in Computer-Human Interactions, ACHI 2009, pp. 75–81, February 2009Google Scholar
  9. 9.
    Green, M., Lo, J.: The grappl 3D interaction technique library. In: VRST 2004, pp. 16–23. ACM, New York (2004)Google Scholar
  10. 10.
    Hand, C.: A survey of 3D interaction techniques. In: Computer Graphics Forum, vol. 16, pp. 269–281 (1997)CrossRefGoogle Scholar
  11. 11.
    Kuntz, S.: MiddleVR a generic VR toolbox. In: 2015 IEEE Virtual Reality (VR), pp. 391–392, March 2015Google Scholar
  12. 12.
    Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: Machine learning based interaction technique selection for 3D user interfaces. In: Bourdot, P., et al. (eds.) EuroVR 2019. LNCS, vol. 11883, pp. 33–51. Springer, Cham (2019) Google Scholar
  13. 13.
    Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: Plasticity for 3D user interfaces: new models for devices and interaction techniques. In: EICS 2015. ACM (2015)Google Scholar
  14. 14.
    Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: A survey of plasticity in 3D user interfaces. In: 7th Workshop SEARIS (2014)Google Scholar
  15. 15.
    Lacoche, J., Duval, T., Arnaldi, B., Maisel, É., Royan, J.: D3part: a new model for redistribution and plasticity of 3D user interfaces. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI). IEEE (2016)Google Scholar
  16. 16.
    Lee, W.L., Green, M.: Automatic layout for 3D user interfaces construction. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and its Applications, pp. 113–120 (2006)Google Scholar
  17. 17.
    Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML: a language supporting multi-path development of user interfaces. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005). Scholar
  18. 18.
    Lindt, I.: Adaptive 3D-user-interfaces. Ph.D. thesis (2009)Google Scholar
  19. 19.
    Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software tools. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(1), 3–28 (2000)CrossRefGoogle Scholar
  20. 20.
    Thevenin, D., Coutaz, J.: Plasticity of user interfaces: framework and research agenda. In: Proceedings of INTERACT, vol. 99, pp. 110–117 (1999)Google Scholar
  21. 21.
    Valkov, D., Bolte, B., Bruder, G., Steinicke, F.: Viargo - a generic virtual reality interaction library. In: 5th Workshop SEARIS (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jérémy Lacoche
    • 1
    • 2
  • Thierry Duval
    • 3
    • 4
    Email author
  • Bruno Arnaldi
    • 5
    • 6
  • Eric Maisel
    • 4
    • 7
  • Jérôme Royan
    • 2
  1. 1.Orange LabsRennesFrance
  2. 2.IRT b<>comRennesFrance
  3. 3.IMT ATlantiqueBrestFrance
  4. 4.Lab-STICC, UMR CNRS 6285BrestFrance
  5. 5.Irisa, UMR CNRS 6074RennesFrance
  6. 6.INSA de RennesRennesFrance
  7. 7.ENIBBrestFrance

Personalised recommendations