Advertisement

Expert Evaluation of the Usability of HeloVis: A 3D Immersive Helical Visualization for SIGINT Analysis

  • Alma Cantu
  • Thierry DuvalEmail author
  • Olivier Grisvard
  • Gilles Coppin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11883)

Abstract

This paper presents an evaluation of HeloVis: a 3D interactive visualization that relies on immersive properties to improve user performance during SIGnal INTelligence (SIGINT) analysis. HeloVis draws on perceptive biases, highlighted by Gestalt laws, and on depth perception to enhance the recurrence properties contained in the data. In this paper, we briefly recall what is SIGINT, the challenges that it brings to visual analytics, and the limitations of state of the art SIGINT tools. Then, we present HeloVis, and we evaluate its efficiency through the results of an evaluation that we have made with civil and military operators who are the expert end-users of SIGINT analysis.

Keywords

HCI Visual analytics Immersive analytics Scientific visualization 3D User Interaction Virtual environments Virtual reality 

References

  1. 1.
    Arsenault, R., et al.: A system for visualizing time varying oceanographic 3D data. In: Oceans’04 MTS/IEEE Techno-Ocean 2004 (IEEE Cat. No. 04CH37600), vol. 2, pp. 1–5 (2004)Google Scholar
  2. 2.
    Bach, B., Dachselt, R., Carpendale, S., Dwyer, T., Collins, C., Lee, B.: Immersive analytics: exploring future interaction and visualization technologies for data analytics. In: Proceedings of the 2016 ACM on Interactive Surfaces and Spaces (ISS 2016), pp. 529–533. ACM, NewYork (2016)Google Scholar
  3. 3.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press (2011). https://books.google.fr/books?id=X5caQwAACAAJ
  4. 4.
    Brath, R.: 3D InfoVis is here to stay: deal with it. In: 2014 IEEE VIS International Workshop on 3DVis, 3DVis 2014, pp. 25–31. IEEE, Paris (2015)Google Scholar
  5. 5.
    Brooke, J.: SUS-A quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)Google Scholar
  6. 6.
    Cantu, A., Duval, T., Grisvard, O., Coppin, G.: HeloVis: a helical visualization for SIGINT analysis using 3D immersion. In: 11th IEEE Pacific Visualization Symposium (PacificVis 2018), pp. 175–179. Kobe, Japan, April 2018Google Scholar
  7. 7.
    Chandler, T., et al.: Immersive Analytics. In: Proceedings of Big Data Visual Analytics (BDVA), pp. 1–8 (2015)Google Scholar
  8. 8.
    Cordeil, M., Cunningham, A., Dwyer, T., Thomas, B., Marriott, K.: ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 71–83 (2017)Google Scholar
  9. 9.
    Donalek, C., et al.: Immersive and collaborative data visualization using virtual reality platforms. In: 2014 IEEE International Conference on Big Data Immersive, pp. 609–614 (2014)Google Scholar
  10. 10.
    Dubel, S., Rohlig, M., Schumann, H., Trapp, M.: 2D and 3D presentation of spatial data: a systematic review. In: 2014 IEEE VIS International Workshop on 3DVis, 3DVis 2014, pp. 11–18. IEEE, Paris (2015)Google Scholar
  11. 11.
    Gautier, J., Davoine, P.A., Cunty, C.: Helical time representation to visualize return-periods of spatio-temporal events. In: 19th AGILE International Conference on Geographic Information Science (2016)Google Scholar
  12. 12.
    Greffard, N., Picarougne, F., Kuntz, P.: Visual community detection: an evaluation of 2D, 3D perspective and 3D stereoscopic displays. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 215–225. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25878-7_21CrossRefGoogle Scholar
  13. 13.
    Kaur, K.: Designing virtual environments for usability. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Human-Computer Interaction INTERACT 1997. ITIFIP, pp. 636–639. Springer, Boston, MA (1997).  https://doi.org/10.1007/978-0-387-35175-9_112CrossRefGoogle Scholar
  14. 14.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Koffka, K.: Principles of Gestalt Psychology, vol. 44. Routledge, Abingdon (2013)CrossRefGoogle Scholar
  16. 16.
    Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Seven guiding scenarios for information visualization evaluation (2011)Google Scholar
  17. 17.
    Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009)CrossRefGoogle Scholar
  18. 18.
    Munzner, T.: Rules of thumb. In: Visualization analysis and design. CRC Press (2014)Google Scholar
  19. 19.
    Viau, C., McGuffin, M.J.: ConnectedCharts: explicit visualization of relationships between data graphics. In: Bruckner, S., Miksch, S., Pfister, H. (eds.) Eurographics Conference on Visualization, vol. 31, pp. 1285–1294. Blackwell Publishing, June 2012CrossRefGoogle Scholar
  20. 20.
    Wagemans, J., et al.: A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychol. Bull. 138(6), 1218 (2012)CrossRefGoogle Scholar
  21. 21.
    Wang, B., Mueller, K.: Does 3D really make sense for visual cluster analysis? Yes! In: 2014 IEEE VIS International Workshop on 3DVis, 3DVis 2014, pp. 37–44. IEEE, Paris (2014)Google Scholar
  22. 22.
    Zade, A.A.T., Pezeshk, A.M.: Pulse repetition interval detection using statistical modeling. In: Proceedings of the 8th International Conference on Signal Processing Systems, pp. 100–104. ACM (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alma Cantu
    • 1
    • 2
    • 3
  • Thierry Duval
    • 2
    • 3
    Email author
  • Olivier Grisvard
    • 1
    • 2
    • 3
  • Gilles Coppin
    • 2
    • 3
  1. 1.Thales DMSBrestFrance
  2. 2.IMT ATlantiqueBrestFrance
  3. 3.Lab-STICC, UMR CNRS 6285BrestFrance

Personalised recommendations