Advertisement

Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers—Experimentation on On-field Use Case

  • Quentin LoizeauEmail author
  • Florence Danglade
  • Fakhreddine Ababsa
  • Frédéric Merienne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11883)

Abstract

Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity.

Keywords

Augmented reality Aeronautical maintenance On-field evaluation Criteria Use case selection Added value 

References

  1. 1.
    IATA Press Release No. 62. https://www.iata.org/pressroom/pr/Pages/2018-10-24-02.aspx. Accessed 14 June 2019
  2. 2.
    EASA Regulations. https://www.easa.europa.eu/regulations. Accessed 14 June 2019
  3. 3.
    MRO Survey 2017: When Growth Outpaces Capacity. https://www.oliverwyman.com/our-expertise/insights/2017/apr/mro-survey-2017.html. Accessed 14 June 2019
  4. 4.
    Azuma, R.T.: A survey of augmented reality. Presence 6, 355–385 (1997)CrossRefGoogle Scholar
  5. 5.
    Van Krevelen, D.W.F., Poelman, R.: A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Reality 9(2), 1–20 (2010)Google Scholar
  6. 6.
    Keynote Prof. Dr. Henry Fuchs - The XR Future - the coming utopia or a gamer’s plaything. https://www.youtube.com/watch?v=lyX_0gcixf4. Accessed 05 Jan 2019
  7. 7.
    Caudell, T., Mizell, D.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences (1992)Google Scholar
  8. 8.
    Mura, M.D., Dini, G., Failli, F.: An integrated environment based on augmented reality and sensing device for manual assembly workstations. Procedia CIRP 41, 340–345 (2016)CrossRefGoogle Scholar
  9. 9.
    Kin, S.J., Dey, A.K.: Simulated augmented reality windshield display as a cognitive mapping aid for elder driver navigation. In: CHI 2009 – Navigation, Boston (2009)Google Scholar
  10. 10.
    PWC: How will people create content for augmented reality? https://usblogs.pwc.com/emerging-technology/how-will-people-create-content-for-augmented-reality/. Accessed 14 June 2019
  11. 11.
    Fite-Georgel, P.: Is there a reality in industrial augmented reality? In: 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011 (2011)Google Scholar
  12. 12.
    Quandt, M., Knoke, B., Gorldt, C., Freitag, M., Thoben, K.D.: General requirements for industrial augmented reality applications. Procedia CIRP 72, 1130–1135 (2018)CrossRefGoogle Scholar
  13. 13.
    Palmarini, R., Erkoyuncu, J.A., Roy, R.: An innovative process to select Augmented Reality (AR) technology for maintenance. Procedia CIRP 59, 23–28 (2017)CrossRefGoogle Scholar
  14. 14.
    Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 49, 215–228 (2018)CrossRefGoogle Scholar
  15. 15.
    Baumeister, J., et al.: Cognitive cost of using augmented reality displays. IEEE Trans. Visual Comput. Graph. 23, 2378–2388 (2017)CrossRefGoogle Scholar
  16. 16.
    Renner, P., Pfeiffer, T.: Augmented reality assistance in the central field-of-view outperforms peripheral displays for order picking: results from a virtual reality simulation study. In: Adjunct Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017 (2017)Google Scholar
  17. 17.
    Werrlich, S., Eichstetter, E., Nitsche, K., Notni, G.: An overview of evaluations using augmented reality for assembly training tasks. Int. J. Comput. Inf. Eng. 11, 1068–1074 (2017)Google Scholar
  18. 18.
    Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., Preusche, C.: An augmented reality training platform for assembly and maintenance skills. Robot. Auton. Syst. 61, 398–403 (2013)CrossRefGoogle Scholar
  19. 19.
    Rios, H., González, E., Rodriguez, C., Siller, H.R., Contero, M.: A mobile solution to enhance training and execution of troubleshooting techniques of the engine air bleed system on boeing 737. Procedia Comput. Sci. (2013)Google Scholar
  20. 20.
    Syberfeldt, A., Danielsson, O., Holm, M., Wang, L.: Visual assembling guidance using augmented reality. Procedia Manuf. (2015)Google Scholar
  21. 21.
    Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65, 270–278 (2014)CrossRefGoogle Scholar
  22. 22.
    Blaga, A.D., Frutos-Pascual, M., Al-Kalbani, M., Williams, I.: Usability analysis of an off-the-shelf hand posture estimation sensor for freehand physical interaction in egocentric mixed reality. In: Adjunct Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017 (2017)Google Scholar
  23. 23.
    Paas, F.G.W.C.: Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J. Educ. Psychol. 84, 429–434 (1992)CrossRefGoogle Scholar
  24. 24.
    Brunken, R., Plass, J.L., Leutner, D.: Direct measurement of cognitive load in multimedia learning. Educ. Psychol. 38(1), 53–61 (2003)CrossRefGoogle Scholar
  25. 25.
    Hornbaek, K.: Current practice in measuring usability: challenges to usability studies and research. Int. J. Hum. Comput Stud. 64, 79–102 (2006)CrossRefGoogle Scholar
  26. 26.
    Rubio, S., Diaz, E., Martin, J., Puente, J.M.: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. Int. Rev. 53(1), 61–86 (2004)CrossRefGoogle Scholar
  27. 27.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Amsterdam (1988)Google Scholar
  28. 28.
    Brooke, J.: SUS - a quick and dirty usability scale (1996)Google Scholar
  29. 29.
    Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4, 114–123 (2009)Google Scholar
  30. 30.
    Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later (2006)Google Scholar
  31. 31.
    Brooke, J.: SUS: a retrospective. J. Usability Stud. 8, 29–40 (2013)Google Scholar
  32. 32.
    Lugan, G.: L’élaboration de la maintenance aéronautique à travers la méthodologie MSG-3. Master thesis (2011)Google Scholar
  33. 33.
    Martinetti, A., Rajabalinejad, M., Dongen, L.V.: Shaping the future maintenance operations: reflections on the adoptions of augmented reality through problems and opportunities. Procedia CIRP (2017)Google Scholar
  34. 34.
    Jetter, J., Eimecke, J., Rese, A.: Augmented reality tools for industrial applications: what are potential key performance indicators and who benefits? Comput. Hum. Behav. 87, 18–33 (2018)CrossRefGoogle Scholar
  35. 35.
    ISO: Exigences ergonomiques pour travail de bureau avec terminaux à écrans de visualisation (TEV) - Partie 11: Lignes directrices relatives à l’utilisabilité. ISO 9241-11 (1998)Google Scholar
  36. 36.
    Diota | Solutions 4.0 for Industry. http://diota.com/index.php/en/. Accessed 14 June 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Quentin Loizeau
    • 1
    Email author
  • Florence Danglade
    • 1
  • Fakhreddine Ababsa
    • 1
  • Frédéric Merienne
    • 1
  1. 1.LISPEN EA 7515, Arts et Métiers, Institut ImageChalon-sur-SaôneFrance

Personalised recommendations