Camouflaged Person Identification

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny


This chapter proposes a new method of camouflaged person identification that combines discrete wavelet coefficients with support vector machine (SVM) classifier. Multiresolution property of wavelet transform provides invariant person identification against camouflaged scenes and do not get affected by similar foreground and background objects. Flexibility of wavelet and SVM makes the proposed method robust while providing better efficiency. For evaluation of the proposed method, we have experimented it over CAMO_UOW dataset. From objective evaluation it is clear that proposed approach outperforms existing camouflaged person identification approaches. The proposed methodology is simple and does not depend on a specific special resolution. It is suitable for detecting camouflaged persons in the images or videos where foreground and background are almost similar.


Person detection Camouflaged data Ambiguous background F-measure 


  1. 1.
    Sharma L, Garg PK (2019) From visual surveillance to internet of things: technology and applications. Taylor and Francis, New YorkCrossRefGoogle Scholar
  2. 2.
    Kavalionak H, Gennaro C, Amato G, Vairo C, Perciante C, Meghini C, Falchi F (2019) Distributed video surveillance using smart cameras. J Grid Comput 17(1):59–77CrossRefGoogle Scholar
  3. 3.
    Anderson NW, Turner CD, Le DM, Vollmar U, Davis TJ (2019) U.S. Patent Application No. 10/183,667Google Scholar
  4. 4.
    Zhao Y, Belkasim S (2012) Multiresolution Fourier descriptors for multiresolution shape analysis. IEEE Signal Process Lett 19(10):692–695CrossRefGoogle Scholar
  5. 5.
    Flusser J, Suk T, Zitova B (2009) Moments and moment invariants in pattern recognition. Wiley, ChichesterCrossRefGoogle Scholar
  6. 6.
    Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187zbMATHGoogle Scholar
  7. 7.
    Guo L, Zhao J (2008) Specific human detection from surveillance video based on color invariant moments. Int Symp Intell Inf Technol Appl 2:331–335Google Scholar
  8. 8.
    Nigam S, Deb K, Khare A (2013) Moment invariants based object recognition for different pose and appearances in real scenes. In: 2013 international conference on informatics, electronics and vision (ICIEV). IEEE, pp 1–5Google Scholar
  9. 9.
    Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recogn 36(12):2895–2907CrossRefGoogle Scholar
  10. 10.
    Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process 92:308–318CrossRefGoogle Scholar
  11. 11.
    Hosny KM (2010) Refined translation and scale Legendre moment invariants. Pattern Recogn Lett 31:533–538CrossRefGoogle Scholar
  12. 12.
    Dalal N, Triggs B (2005) Histogram of oriented gradients for human detection. IEEE Int Conf Comput Vis Pattern Recogn:886–893Google Scholar
  13. 13.
    Soler JD, Beuther H, Rugel M, Wang Y, Clark PC, Glover SCO et al (2019) Histogram of oriented gradients: a technique for the study of molecular cloud formation. Astron Astrophys 622:A166CrossRefGoogle Scholar
  14. 14.
    Pang Y, Yuan Y, Li X, Pan J (2011) Efficient HOG human detection. Signal Process 91:773–781CrossRefGoogle Scholar
  15. 15.
    Liu H, Xu T, Wang X, Qian Y (2013) Related HOG features for human detection using cascaded Adaboost and SVM classifiers. Int Multimed Model Conf (MMM) LNCS 7733(2):345–355Google Scholar
  16. 16.
    Chandrasekhar V, Takacs G, Chen D, Tsai S, Grzeszczuk R, Girod B (2009) CHoG: compressed histogram of gradients A low bit-rate feature descriptor. IEEE Int Conf Comput Vis Pattern Recogn:2504–2511Google Scholar
  17. 17.
    Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. ACM Int Conf Image Video Retr:401–408Google Scholar
  18. 18.
    Skibbe H, Reisert M, Schmidt T, Brox T (2012) Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans Pattern Anal Mach Intell 34(8):1563–1575CrossRefGoogle Scholar
  19. 19.
    Skibbe H, Reisert M, Burkhardt H (2011) SHOG – spherical HOG descriptors for rotation invariant 3D object detection. Int Conf Pattern Recogn:142–151Google Scholar
  20. 20.
    Nigam S, Khare M, Srivastava RK, Khare A (2013) An effective local feature descriptor for object detection in real scenes. In: 2013 IEEE conference on information & communication technologies. IEEE, pp 244–248Google Scholar
  21. 21.
    Nguyen DT, Ogunbona PO, Li W (2013) A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recogn 46:1485–1500CrossRefGoogle Scholar
  22. 22.
    Ko BC, Kim DY, Jung JH, Nam JY (2013) Three-level cascade of random forests for rapid human detection. Opt Eng 52(2):027204CrossRefGoogle Scholar
  23. 23.
    Zhang JG, Huang KQ, Yu YN, Tan TN (2011) Boosted local structured HOG-LBP for object localization. IEEE Int Conf Comput Vis Pattern Recogn:1393–1400Google Scholar
  24. 24.
    Shen J, Yang W, Sun C (2012) Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP. Neural Comput Applic. ISNN 2012CrossRefGoogle Scholar
  25. 25.
    Zhou S, Liu Q, Guo J, Jiang Y (2012) ROI-HOG and LBP based human detection via shape part-templates matching. Int Conf Neural Inf Process LNCS 7667(5):109–115Google Scholar
  26. 26.
    Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. IEEE Int Conf Comput Vis:89–96Google Scholar
  27. 27.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRefGoogle Scholar
  28. 28.
    Li S, Florencio D, Li W, Zhao Y, Cook C (2018) A fusion framework for camouflaged moving foreground detection in the wavelet domain. IEEE Trans Image Process 27(8):3918–3930MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780CrossRefGoogle Scholar
  30. 30.
    El Baf F, Bouwmans T, Vachon B (2008) Fuzzy integral for moving object detection. In: 2008 IEEE international conference on fuzzy systems (IEEE world congress on computational intelligence). IEEE, pp 1729–1736Google Scholar
  31. 31.
    Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, pp 38–43Google Scholar
  33. 33.
    St-Charles PL, Bilodeau GA, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yao J, Odobez JM (2007) Multi-layer background subtraction based on color and texture. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, pp 1–8Google Scholar
  35. 35.
    Zhou X, Yang C, Yu W (2012) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610CrossRefGoogle Scholar
  36. 36.
    Shakeri M, Zhang H (2016) COROLA: a sequential solution to moving object detection using low-rank approximation. Comput Vis Image Underst 146:27–39CrossRefGoogle Scholar
  37. 37.
    Nigam S, Khare A (2015) Multiresolution approach for multiple human detection using moments and local binary patterns. Multimed Tools Appl 74(17):7037–7062CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations