Advertisement

Object Tracking

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny
Chapter
  • 33 Downloads

Abstract

Object tracking is core probelm in computer vision for effective video surveillance. Wavelet based tracking techniques have emerged as a powerful tool. We have exploited newly emerged curvelet transform coefficients for video object tracking. Unlike existing methods, wavelet based tracking computes only wavelet coefficients and do not get affected by variations in object’s shape, size or color. However, we assumed that size of object does not change significantly in consecutive frames. A small change is permissible only. If we take long frame range, we see that object’s shape and size changes significantly. Experimentation demonstrates that curvelet transform is capable of tracking of single object as well as multiple objects. It is found superior when compared qualitatively and quantitatively with existing tracking methods.

Keywords

Tracking Random motion Multiple objects Complex environment 

References

  1. 1.
    Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):58CrossRefGoogle Scholar
  2. 2.
    Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848CrossRefGoogle Scholar
  3. 3.
    Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G et al (2015) The visual object tracking vot2015 challenge results. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–23Google Scholar
  4. 4.
    Viani F, Lizzi L, Rocca P, Benedetti M, Donelli M, Massa A (2008) Object tracking through RSSI measurements in wireless sensor networks, vol 44. University of Trento, p 653Google Scholar
  5. 5.
    Samarah S, Al-Hajri M, Boukerche A (2011) A predictive energy-efficient technique to support object-tracking sensor networks. IEEE Trans Veh Technol 60(2):656–663CrossRefGoogle Scholar
  6. 6.
    Cho H, Seo YW, Kumar BV, Rajkumar RR (2014) A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: Robotics and automation (ICRA), 2014 IEEE international conference on. IEEE, pp 1836–1843Google Scholar
  7. 7.
    Raheja JL, Chaudhary A, Singal K (2011) Tracking of fingertips and centers of palm using kinect. In: Computational intelligence, modelling and simulation (CIMSiM), 2011 third international conference on. IEEE, pp 248–252Google Scholar
  8. 8.
    Kendrick L, Bzostek A, Doerr VJ (2015) System and method for tracking positions of uniform marker geometries. U.S. Patent No. 9,220,573. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  9. 9.
    Tang X, Sharp GC, Jiang SB (2007) Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys Med Biol 52(14):4081–4098CrossRefGoogle Scholar
  10. 10.
    Maharbiz MM, Morichau-Beauchant T (2013) Intelligent board game system with visual marker based object tracking and identification. U.S. Patent Application 13/294,071, filed May 16, 2013Google Scholar
  11. 11.
    Guan M, Wen C, Shan M, Ng CL, Zou Y (2019) Real-time event-triggered object tracking in the presence of model drift and occlusion. IEEE Trans Ind Electron 66(3):2054–2065CrossRefGoogle Scholar
  12. 12.
    Chen K, Tao W (2019) Learning linear regression via single-convolutional layer for visual object tracking. IEEE Trans Multimed 21(1):86–97MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ning J, Zhang L, Zhang D, Wu C (2012) Robust mean-shift tracking with corrected background-weighted histogram. IET Comput Vis 6(1):62–69MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tian W, Lauer M, Chen L (2019) Online multi-object tracking using joint domain information in traffic scenarios. IEEE Trans Intell Transp Syst:1–11Google Scholar
  15. 15.
    Kim C, Song D, Kim CS, Park SK (2019) Object tracking under large motion: combining coarse-to-fine search with superpixels. Inf Sci 480:194–210CrossRefGoogle Scholar
  16. 16.
    Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recogn Artif Intell 23(7):1245–1263CrossRefGoogle Scholar
  17. 17.
    Chen Y, Wang J, Xia R, Zhang Q, Cao Z, Yang K (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput:1–13Google Scholar
  18. 18.
    Porikli F, Tuzelq O, Meer P (2006) Covariance tracking using model update based on lie algebra. Proc IEEE Conf Comput Vision Pattern Recog USA:728–735Google Scholar
  19. 19.
    Li M, Peng Z, Chen Y, Wang X, Peng L, Wang Z et al (2019) A novel reverse sparse model utilizing the spatio-temporal relationship of target templates for object tracking. Neurocomputing 323:319–334CrossRefGoogle Scholar
  20. 20.
    Nigam S, Khare A (2010) Curvelet transform based object tracking. In: IEEE international conference on computer and communication technology, pp 230–235Google Scholar
  21. 21.
    Nigam S, Khare A (2012) Curvelet transform-based technique for tracking of moving objects. IET Comput Vis 6(3):231–251MathSciNetCrossRefGoogle Scholar
  22. 22.
    Heinrich S, Springstübe P, Knöppler T, Kerzel M, Wermter S (2019) Continuous convolutional object tracking in developmental robot scenarios. Neurocomputing 342:137–144CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations