Advertisement

On Wavelet Domain Video Watermarking Techniques

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny
Chapter
  • 32 Downloads

Abstract

The large availability and access of video data for education, entertainment such as games and movies poses several challenges of copyright violation and illegal distribution of data. More specifically, pirated video distribution has been a key threat for such copyright violation. To handle these challenges, watermarking techniques can be used to provide copyright protection. The wide application of wavelet transform in the implementation of image watermarking techniques compelled to discuss wavelet domain video watermarking techniques in this chapter. The present chapter provides an overview of video watermarking techniques in wavelet domain and discusses various methods used for embedding and extraction of watermark. It also provides the description of various attacks and key characteristics of video watermarking techniques with comparative analysis of results for evaluation of the existing methods.

Keywords

Video watermarking Watermark embedding Watermark extraction Copyright protection Geometric attacks Wavelet transforms 

References

  1. 1.
    Asikuzzaman M, Pickering MR (2017) An overview of digital video watermarking. IEEE Trans Circuits Syst Video Technol 28(9):2131–2153CrossRefGoogle Scholar
  2. 2.
    Barni M, Bartolini F (2004) Data hiding for fighting piracy. IEEE Signal Process Mag 21(2):28–39CrossRefGoogle Scholar
  3. 3.
    Bloom JA, Cox IJ, Kalker T, Linnartz JP, Miller ML, Traw CBS (1999) Copy protection for DVD video. Proc IEEE 87(7):1267–1276CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Langelaar GC, Setyawan I, Lagendijk RL (2000) Watermarking digital image and video data. A state-of-the-art overview. IEEE Signal Process Mag 17(5):20–46CrossRefGoogle Scholar
  8. 8.
    Haitsma J, Kalker T (2001) A watermarking scheme for digital cinema. In: Proceedings 2001 international conference on image processing (Cat. No. 01CH37205), vol 2. IEEE, pp 487–489Google Scholar
  9. 9.
    Zhu W, Xiong Z, Zhang YQ (1999) Multiresolution watermarking for images and video. IEEE Trans Circuits Syst Video Technol 9(4):545–550CrossRefGoogle Scholar
  10. 10.
    Preda RO, Vizireanu DN (2010) A robust digital watermarking scheme for video copyright protection in the wavelet domain. Measurement 43(10):1720–1726CrossRefGoogle Scholar
  11. 11.
    Doerr G, Dugelay JL (2003) A guide tour of video watermarking. Signal Process Image Commun 18(4):263–282CrossRefGoogle Scholar
  12. 12.
    Faragallah OS (2013) Efficient video watermarking based on singular value decomposition in the discrete wavelet transform domain. AEU-Int J Electron Commun 67(3):189–196CrossRefGoogle Scholar
  13. 13.
    Preda RO, Vizireanu ND (2011) Quantisation-based video watermarking in the wavelet domain with spatial and temporal redundancy. Int J Electron 98(3):393–405CrossRefGoogle Scholar
  14. 14.
    Campisi P, Neri A (2005) Video watermarking in the 3D-DWT domain using perceptual masking. In: IEEE International conference on image processing 2005, vol 1. IEEE, pp I–997Google Scholar
  15. 15.
    Rasti P, Samiei S, Agoyi M, Escalera S, Anbarjafari G (2016) Robust non-blind color video watermarking using QR decomposition and entropy analysis. J Visual Commun Image Represent 38:838–847CrossRefGoogle Scholar
  16. 16.
    Agilandeeswari L, Ganesan K (2016) A robust color video watermarking scheme based on hybrid embedding techniques. Multimed Tools Appl 75(14):8745–8780CrossRefGoogle Scholar
  17. 17.
    El’Arbi M, Koubaa M, Charfeddine M, Amar CB (2011) A dynamic video watermarking algorithm in fast motion areas in the wavelet domain. Multimed Tools Appl 55(3):579–600CrossRefGoogle Scholar
  18. 18.
    Alias Sathya SP, Ramakrishnan S (2018) Fibonacci based key frame selection and scrambling for video watermarking in DWT–SVD domain. Wirel Pers Commun 102(2):2011–2031CrossRefGoogle Scholar
  19. 19.
    Farri E, Ayubi P (2018) A blind and robust video watermarking based on IWT and new 3D generalized chaotic sine map. Nonlinear Dyn 93(4):1875–1897CrossRefGoogle Scholar
  20. 20.
    Bhardwaj A, Verma VS, Jha RK (2018) Robust video watermarking using significant frame selection based on coefficient difference of lifting wavelet transform. Multimed Tools Appl 77(15):19659–19678CrossRefGoogle Scholar
  21. 21.
    Shukla D, Sharma M (2018) Robust scene-based digital video watermarking scheme using level-3 DWT: approach, evaluation, and experimentation. Radioelectron Commun Syst 61(1):1–12CrossRefGoogle Scholar
  22. 22.
    Singh KM (2018) A robust rotation resilient video watermarking scheme based on the SIFT. Multimed Tools Appl 77(13):16419–16444CrossRefGoogle Scholar
  23. 23.
    Serdean CV, Ambroze MA, Tomlinson M, Wade JG (2003) DWT-based high-capacity blind video watermarking, invariant to geometrical attacks. IEE Proc Vis Image Signal Process 150(1):51–58CrossRefGoogle Scholar
  24. 24.
    Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 10(3):234–253MathSciNetCrossRefGoogle Scholar
  25. 25.
    Coria LE, Pickering MR, Nasiopoulos P, Ward RK (2008) A video watermarking scheme based on the dual-tree complex wavelet transform. IEEE Trans Inf Forensics Secu 3(3):466–474CrossRefGoogle Scholar
  26. 26.
    Esfahani R, Akhaee MA, Norouzi Z (2019) A fast video watermarking algorithm using dual tree complex wavelet transform. Multimed Tools Appl 78(12):16159–16175CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Lai CC, Tsai CC (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063CrossRefGoogle Scholar
  29. 29.
    Agoyi M, Çelebi E, Anbarjafari G (2015) A watermarking algorithm based on chirp z-transform, discrete wavelet transform, and singular value decomposition. Signal Image Video Process 9(3):735–745CrossRefGoogle Scholar
  30. 30.
    Hamad S, Khalifa A (2015) Non-blind data hiding for RGB images using DCT-based fusion and H. 264 compression concepts. Adv Comput Sci Int J 4(3):97–103Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations