An Overview of Medical Image Fusion in Complex Wavelet Domain

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny


Fusion of multisensor images has shown a potential application in various application domains such as security, medical imaging etc. The recent developments in medical imaging sensors have been a great motivation for fusion due to their complementary nature. This chapter aims to address medical image fusion in complex wavelet domain and provides a detailed study of fusion methods. The wavelet transforms based fusion methods are ahead of other methods in terms of signal representation, complementary information and redundancy. These properties make wavelet transforms suitable for multisensory image fusion. The fusion experiments have been demonstrated over several sets of medical images for different fusion rules in complex wavelet domain. Visual and quantitative evaluation of the proposed fusion results with state-of-the-art fusion methods showed the effectiveness and goodness of the complex wavelet transform based fusion methods.


Image fusion Wavelet transforms Fusion rules Fusion metrics Quantitative evaluation 


  1. 1.
    Blum RS, Liu Z (2005) Multi-sensor image fusion and its applications. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Model Image Process 57(3):235–245CrossRefGoogle Scholar
  3. 3.
    Pohl C, Van Genderen JL (1998) Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854CrossRefGoogle Scholar
  4. 4.
    James AP, Dasarathy BV (2014) Medical image fusion: a survey of the state of the art. Inf Fusion 19:4–19CrossRefGoogle Scholar
  5. 5.
    Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–a multiresolution approach. Inf Fusion 19:49–60CrossRefGoogle Scholar
  6. 6.
    Singh S, Gyaourova A, Bebis G, Pavlidis I (2004) Infrared and visible image fusion for face recognition. In: Biometric technology for human identification, vol 5404. International Society for Optics and Photonics, Bellingham, pp 585–596zbMATHCrossRefGoogle Scholar
  7. 7.
    Ma J, Ma Y, Li C (2019) Infrared and visible image fusion methods and applications: A survey. Inf Fusion 45:153–178CrossRefGoogle Scholar
  8. 8.
    Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872CrossRefGoogle Scholar
  9. 9.
    Amolins K, Zhang Y, Dare P (2007) Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS J Photogramm Remote Sens 62(4):249–263CrossRefGoogle Scholar
  10. 10.
    Rockinger O (1996) Pixel-level fusion of image sequences using wavelet frames. In: Proceedings of 16th leeds annual statistical research workshop, pp 149–154.Google Scholar
  11. 11.
    Rockinger O, Fechner T (1998) Pixel-level image fusion: The case of image sequences. In: Signal processing, sensor fusion, and target recognition VII, vol 3374. International Society for Optics and Photonics, Bellingham, pp 378–388CrossRefGoogle Scholar
  12. 12.
    Petrovic V (2001) Multisensor pixel-level image fusion (Doctoral dissertation, University of Manchester).Google Scholar
  13. 13.
    Lewis JJ, O’callaghan RJ, Nikolov, SG, Bull DR, Canagarajah CN (2004) Region-based image fusion using complex wavelets. In: Seventh international conference on information fusion (FUSION). vol 1, pp 555–562Google Scholar
  14. 14.
    Zhao Y, Yin Y, Fu D (2008) Decision-level fusion of infrared and visible images for face recognition. In: 2008 Chinese control and decision conference. IEEE, pp 2411–2414Google Scholar
  15. 15.
    Stathaki T (2011) Image fusion: algorithms and applications. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Mitianoudis N, Stathaki T (2007) Pixel-based and region-based image fusion schemes using ICA bases. Inf Fusion 8(2):131–142zbMATHCrossRefGoogle Scholar
  17. 17.
    Chibani Y (2006) Additive integration of SAR features into multispectral SPOT images by means of the à trous wavelet decomposition. ISPRS J Photogramm Remote Sens 60(5):306–314CrossRefGoogle Scholar
  18. 18.
    Daneshvar S, Ghassemian H (2010) MRI and PET image fusion by combining IHS and retina-inspired models. Inf Fusion 11(2):114–123CrossRefGoogle Scholar
  19. 19.
    Naidu VPS, Raol JR (2008) Pixel-level image fusion using wavelets and principal component analysis. Def Sci J 58(3):338–352CrossRefGoogle Scholar
  20. 20.
    Clevers JGPW, Zurita-Milla R (2008) Multisensor and multiresolution image fusion using the linear mixing model. In: Stathaki T (ed) Image fusion: algorithms and applications. Academic Press/Elsevier, London, pp 67–84CrossRefGoogle Scholar
  21. 21.
    Tian J, Chen L, Ma L, Yu W (2011) Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Opt Commun 284(1):80–87CrossRefGoogle Scholar
  22. 22.
    Hamza AB, He Y, Krim H, Willsky A (2005) A multiscale approach to pixel-level image fusion. Integrated Comput-Aided Eng 12(2):135–146CrossRefGoogle Scholar
  23. 23.
    Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540CrossRefGoogle Scholar
  24. 24.
    Burt PJ, Kolczynski RJ (1993) Enhanced image capture through fusion. In: Proceedings of the 4th IEEE international conference on computer vision (ICCV ‘93), pp 173–182Google Scholar
  25. 25.
    Toet A, Van Ruyven LJ, Valeton JM (1989) Merging thermal and visual images by a contrast pyramid. Opt Eng 28(7):789–792CrossRefGoogle Scholar
  26. 26.
    Toet A (1989) Image fusion by a ratio of low-pass pyramid. Pattern Recogn Lett 9(4):245–253zbMATHCrossRefGoogle Scholar
  27. 27.
    Toet A (1989) A morphological pyramidal image decomposition. Pattern Recogn Lett 9(4):255–261zbMATHCrossRefGoogle Scholar
  28. 28.
    Anderson CH (1998) Filter-subtract-decimate hierarchical pyramid signal analyzing and synthesizing technique. US Patent 4718104 A.Google Scholar
  29. 29.
    Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Model Image Process 57(3):235–245CrossRefGoogle Scholar
  30. 30.
    Mallat S (1999) A wavelet tour of signal processing. Academic Press/Elsevier, San DiegozbMATHGoogle Scholar
  31. 31.
    Cheng S, He J, Lv Z (2008) Medical images of PET/CT weighted fusion based on wavelet transform. In: Proceedings of the 2nd international conference on bioinformatics and biomedical engineering (iCBBE), pp 2523–2525.Google Scholar
  32. 32.
    Piella G, Heijmans H (2002) Multiresolution image fusion guided by a multimodal segmentation. In: Proceedings of advanced concepts for intelligent vision systems, Ghent, Belgium, pp 175–182.Google Scholar
  33. 33.
    Zhang H, Liu L, Lin N (2007) A novel wavelet medical image fusion method. In: IEEE international conference on multimedia and ubiquitous engineering. IEEE, Seoul, pp 548–553Google Scholar
  34. 34.
    Vekkot S, Shukla P (2009) A novel architecture for wavelet based image fusion. World Acad Sci Eng Technol 57:372–377Google Scholar
  35. 35.
    Qu G, Zhang D, Yan P (2001) Medical image fusion by wavelet transform modulus maxima. Opt Express 9(4):184–190CrossRefGoogle Scholar
  36. 36.
    Yang Y (2011) Multiresolution image fusion based on wavelet transform by using a novel technique for selection coefficients. J Multimed 6(1):91–98CrossRefGoogle Scholar
  37. 37.
    Teng J, Wang X, Zhang J, Wang S, Huo P (2010) A multimodality medical image fusion algorithm based on wavelet transform. Proc Adv Swarm Intell, LNCS 6146:627–633CrossRefGoogle Scholar
  38. 38.
    Yang Y (2010) Multimodal medical image fusion through a new DWT based technique. In: 4th IEEE international conference on bioinformatics and biomedical engineering (ICBBE), pp 1–4Google Scholar
  39. 39.
    Alfano B, Ciampi M, Pietro GD (2007) A wavelet-based algorithm for multimodal medical image fusion. Proc Semantic Multimedia, LNCS 4816:117–120CrossRefGoogle Scholar
  40. 40.
    Sweldens W (1998) The lifting scheme: A construction of second generation wavelets. SIAM J Math Anal 29(2):511–546MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):247–269MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kor S, Tiwary US (2004) Feature level fusion of multimodal medical images in lifting wavelet transform domain. In: 26th annual international conference of the IEEE engineering in medicine and biology society (EMBS ’04), vol 1, pp 1479–1482CrossRefGoogle Scholar
  43. 43.
    Xue-jun W, Ying M (2010) A medical image fusion algorithm based on lifting wavelet transform. IEEE Int Conf Artif Intell Comput Intell (AICI):474–476Google Scholar
  44. 44.
    Cotronei M, Montefusco LB, Puccio L (1998) Multiwavelet analysis and signal processing. IEEE Trans Circuits Syst II, Analog Digit Signal Process 45(8):970–987zbMATHCrossRefGoogle Scholar
  45. 45.
    Strela V, Heller PN, Strang G, Topiwala P, Heil C (1999) The application of multiwavelet filter banks to image processing. IEEE Trans Image Process 8(4):548–563CrossRefGoogle Scholar
  46. 46.
    Wang H (2004) A new multiwavelet-based approach to image fusion. J Math Imaging Vision 21(2):177–192MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Liu Y, Yang J, Sun J (2010) PET/CT medical image fusion algorithm based on multiwavelet transform. 2nd Int Conf Adv Comput Control (ICACC) 2:264–268Google Scholar
  48. 48.
    Cody MA (1994) The wavelet packet transform: extending the wavelet transform. Dr Dobb’s J 19:44–46Google Scholar
  49. 49.
    Yang L, Liu X, Yao Y (2008) Medical image fusion based on wavelet packet transform and self-adaptive operator. 2nd IEEE Int Conf Bioinf Biomed Eng (ICBBE):2647–2650Google Scholar
  50. 50.
    Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. Wavelets Stat Lecture Notes Statist 103:281–299zbMATHCrossRefGoogle Scholar
  51. 51.
    Fowler JE (2005) The redundant discrete wavelet transform and additive noise. IEEE Signal Process Lett 12(9):629–632CrossRefGoogle Scholar
  52. 52.
    Chibani Y, Houacine A (2000) On the use of the redundant wavelet transform for multisensor image fusion. In: 7th IEEE International conference on electronics, circuits and systems (ICECS), pp 442–445.Google Scholar
  53. 53.
    Singh R, Vatsa M, Noore A (2009) Multimodal medical image fusion using redundant wavelet transform. In: 7th international conference on advances in pattern recognition, pp 232–235.Google Scholar
  54. 54.
    Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 10(3):234–253MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Kingsbury NG (1998) The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: IEEE digital signal processing workshop, vol 86. Citeseer, Bryce Canyon, pp 120–131Google Scholar
  56. 56.
    Lina JM, Mayrand M (1995) Complex daubechies wavelets. Appl Comput Harmon Anal 2(3):219–229MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Lina JM (1998) Complex daubechies wavelets: filters design and applications. In: Inverse problems, tomography, and image processing. Springer, Boston, pp 95–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations