Advertisement

Wavelet Transforms: From Classical to New Generation Wavelets

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny
Chapter
  • 34 Downloads

Abstract

Wavelet transforms have become an important mathematical tool that has been widely explored for visual information processing. The wide range of wavelet transforms and their multiresolution analysis facilitate to solve complex problems ranging from simple to complex image and vision based problems. The present chapter aims to provide an overview of existing wavelet transforms ranging from classical to new generation wavelets. This chapter discusses the basics of the discrete wavelet transform (DWT) followed by new generation wavelet transforms and highlights their useful characteristics. Other than DWT, the present chapter provides a brief review on dual tree complex wavelet transform (DTCWT), curvelet transform (CVT), contourlet transform (CT), contourlet transform (CNT), nonsubsampled contourlet transform (NSCT) to provide fundamentals and understanding of the wavelet transforms.

Keywords

Wavelet transforms Discrete wavelet transform Complex wavelet transform New generation wavelets Applications of wavelet transforms 

References

  1. 1.
    Mallat S (1996) Wavelets for a vision. Proc IEEE 84(4):604–614CrossRefGoogle Scholar
  2. 2.
    Mallat SG (1988) Multiresolution representations and wavelets.Google Scholar
  3. 3.
    Mallat SG (1990) Multiresolution approach to wavelets in computer vision. In: Wavelets. Springer, Berlin/Heidelberg, pp 313–327CrossRefGoogle Scholar
  4. 4.
    Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sifuzzaman M, Islam MR, Ali MZ (2009) Application of wavelet transform and its advantages compared to Fourier transform.Google Scholar
  6. 6.
    Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet transforms: a primer, vol 1. Prentice hall, Upper Saddle RiverGoogle Scholar
  7. 7.
    Raghuveer MR, Bopardikar AS (1998) Wavelet transforms: introduction to theory and applications. Pearson Education Asia, DelhizbMATHGoogle Scholar
  8. 8.
    Heil CE, Walnut DF (1989) Continuous and discrete wavelet transforms. SIAM Rev 31(4):628–666MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Antoine JP, Carrette P, Murenzi R, Piette B (1993) Image analysis with two-dimensional continuous wavelet transform. Signal Process 31(3):241–272zbMATHCrossRefGoogle Scholar
  10. 10.
    Pons-Llinares J, Antonino-Daviu JA, Riera-Guasp M, Lee SB, Kang TJ, Yang C (2014) Advanced induction motor rotor fault diagnosis via continuous and discrete time–frequency tools. IEEE Trans Ind Electron 62(3):1791–1802CrossRefGoogle Scholar
  11. 11.
    Shensa MJ (1992) The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482zbMATHCrossRefGoogle Scholar
  12. 12.
    Meurant G (2012) Wavelets: a tutorial in theory and applications, vol 2. Academic, BostonGoogle Scholar
  13. 13.
    Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM, WellesleyzbMATHGoogle Scholar
  14. 14.
    Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Models Image Process 57(3):235–245CrossRefGoogle Scholar
  15. 15.
    He C, Zheng YF, Ahalt SC (2002) Object tracking using the Gabor wavelet transform and the golden section algorithm. IEEE Trans Multimedia 4(4):528–538CrossRefGoogle Scholar
  16. 16.
    Wang Y, Doherty JF, Van Dyck RE (2000) Moving object tracking in video. In: Proceedings 29th applied imagery pattern recognition workshop. IEEE, Los Alamitos, pp 95–101CrossRefGoogle Scholar
  17. 17.
    Lai CC, Tsai CC (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063CrossRefGoogle Scholar
  18. 18.
    Shih FY, Chuang CF, Wang PS (2008) Performance comparisons of facial expression recognition in JAFFE database. Int J Pattern Recognit Artif Intell 22(03):445–459CrossRefGoogle Scholar
  19. 19.
    Strang G (1989) Wavelets and dilation equations: a brief introduction. SIAM Rev 31(4):614–627MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1991) Shiftable multiscale transforms. IEEE Trans Inf Theory 38(2):587–607MathSciNetCrossRefGoogle Scholar
  21. 21.
    Selesnick I, Baraniuk R, Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151CrossRefGoogle Scholar
  22. 22.
    Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–a multiresolution approach. Inf Fusion 19:49–60CrossRefGoogle Scholar
  23. 23.
    Singh R, Srivastava R, Prakash O, Khare A (2012) Multimodal medical image fusion in dual tree complex wavelet transform domain using maximum and average fusion rules. J Med Imaging Health Inf 2(2):168–173CrossRefGoogle Scholar
  24. 24.
    Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Calderbank AR, Daubechies I, Sweldens W, Yeo BL (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5(3):332–369MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fowler JE (2005) The redundant discrete wavelet transform and additive noise. IEEE Signal Process Lett 12(9):629–632CrossRefGoogle Scholar
  27. 27.
    Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 10(3):234–253MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lina JM, Mayrand M (1995) Complex daubechies wavelets. Appl Comput Harmon Anal 2(3):219–229MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kingsbury NG (1998) The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: IEEE digital signal processing workshop, vol 86. Citeseer, Bryce Canyon, pp 120–131Google Scholar
  30. 30.
    Lina JM (1998) Complex daubechies wavelets: filters design and applications. In: Inverse problems, tomography, and image processing. Springer, Boston, MA, pp 95–112CrossRefGoogle Scholar
  31. 31.
    Clonda D, Lina JM, Goulard B (2004) Complex Daubechies wavelets: properties and statistical image modelling. Signal Process 84(1):1–23zbMATHCrossRefGoogle Scholar
  32. 32.
    Lina JM (1997) Image processing with complex Daubechies wavelets. J Math Imaging Vision 7(3):211–223MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shukla PD (2003) Complex wavelet transforms and their applications. Glasgow (United Kingdom)), M. Phil. Thesis, Dept. of Electronic and Electrical Engineering, University of Strathclyde.Google Scholar
  34. 34.
    Kingsbury N (2000) A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Proceedings 2000 international conference on image processing (Cat. No. 00CH37101), vol 2. IEEE, Vancouver, pp 375–378CrossRefGoogle Scholar
  35. 35.
    Lawton W (1993) Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans Signal Process 41(12):3566–3568zbMATHCrossRefGoogle Scholar
  36. 36.
    Miller M, Kingsbury N (2008) Image modeling using interscale phase properties of complex wavelet coefficients. IEEE Trans Image Process 17(9):1491–1499MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lina JM, Drouilly P (1996) The importance of the phase of the symmetric Daubechies wavelets representation of signals. In: Proc. IWISP, vol 96, p 61CrossRefGoogle Scholar
  38. 38.
    Lina JM, Gagnon L (1995) Image enhancement with symmetric Daubechies wavelets. In: Wavelet applications in signal and image processing III, vol 2569. International Society for Optics and Photonics, Bellingham, pp 196–207CrossRefGoogle Scholar
  39. 39.
    Candès EJ, Donoho DL (2001) Curvelets and curvilinear integrals. J Approx Theory 113(1):59–90MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Candès EJ (2003) What is a curvelet? Not Am Math Soc 50(11):1402–1403MathSciNetGoogle Scholar
  41. 41.
    Candes EJ, Donoho DL (2000) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Stanford Univ Ca Dept of Statistics, StanfordGoogle Scholar
  42. 42.
    Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106CrossRefGoogle Scholar
  44. 44.
    Do MN, Vetterli M (2003) Contourlets. Stud Comput Math 10:83–105MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101CrossRefGoogle Scholar
  46. 46.
    Zhou J, Cunha AL, Do MN (2005) Nonsubsampled contourlet transform: construction and application in enhancement. In: IEEE international conference on image processing 2005, vol 1. IEEE, Genova, pp I–469Google Scholar
  47. 47.
    Fang L, Zhang H, Zhou J, Wang X (2019) Image classification with an RGB-channel nonsubsampled contourlet transform and a convolutional neural network. Neurocomputing.Google Scholar
  48. 48.
    Yang HY, Liang LL, Zhang C, Wang XB, Niu PP, Wang XY (2019) Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput 23(13):4749–4764CrossRefGoogle Scholar
  49. 49.
    Najafi E, Loukhaoukha K (2019) Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J Inf Secur Appl 44:144–156Google Scholar
  50. 50.
    Subasi A, Ahmed A, Aličković E, Hassan AR (2019) Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform. Biomed Signal Process Control 49:231–239CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations