Wavelets and Intelligent Multimedia Applications: An Introduction

  • Rajiv Singh
  • Swati Nigam
  • Amit Kumar Singh
  • Mohamed Elhoseny


With the great development of multimedia technology and applications, it becomes important to provide a thorough understanding of the existing literature. This aim can be achieved by analysis of state of the art methodologies of multimedia applications. Wavelet transforms have been found very useful in a large variety of multimedia applications. It ranges from simple imaging to complex computer vision applications. One of the major advantages of the wavelet transform is that it meets the need of majority of applications and can be combined with machine and deep learning for performance enhancement. These applications include image fusion, image and video watermarking, object tracking, activity recognition, emotion recognition etc. This chapter aims to provide a brief introduction to the development of multimedia applications in the wavelet domain. Some major multimedia applications of the wavelet transforms have been discussed with their relevance and real life applications.


Wavelets Multimedia applications Machine learning Intelligent systems Image processing Computer vision 


  1. 1.
    Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B Biol Sci 275(942):483–519CrossRefGoogle Scholar
  2. 2.
    Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: An information-processing account of its origins and significance. Psychol Rev 83(2):157–171CrossRefGoogle Scholar
  3. 3.
    Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  4. 4.
    Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, StamfordGoogle Scholar
  5. 5.
    Forsyth DA, Ponce J (2002) Computer vision: a modern approach. Prentice Hall Professional Technical Reference, Upper Saddle RiverGoogle Scholar
  6. 6.
    Schalkoff RJ (1989) Digital image processing and computer vision, vol 286. Wiley, New YorkGoogle Scholar
  7. 7.
    Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20CrossRefGoogle Scholar
  8. 8.
    Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998, April) Coding facial expressions with gabor wavelets. In: Proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, Seoul, pp 200–205CrossRefGoogle Scholar
  9. 9.
    Prokop RJ, Reeves AP (1992) A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP: Graph Model Image Process 54(5):438–460Google Scholar
  10. 10.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. ACM Comput Surv (CSUR) 38(4):13–esCrossRefGoogle Scholar
  11. 11.
    Pantic M, Pentland A, Nijholt A, Huang TS (2007) Human computing and machine understanding of human behavior: A survey. In: Artifical intelligence for human computing. Springer, Berlin, Heidelberg, pp 47–71CrossRefGoogle Scholar
  12. 12.
    Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern Part C Appl Rev 34(3):334–352CrossRefGoogle Scholar
  13. 13.
    Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: A survey of the state of the art. Inf Fusion 33:100–112CrossRefGoogle Scholar
  14. 14.
    James AP, Dasarathy BV (2014) Medical image fusion: A survey of the state of the art. Inf Fusion 19:4–19CrossRefGoogle Scholar
  15. 15.
    Jiang D, Zhuang D, Huang Y, Fu J (2011) Survey of multispectral image fusion techniques in remote sensing applications. In: Image fusion and its applications, pp 1–23.Google Scholar
  16. 16.
    Jain AK, Dorai C (1997) Practicing vision: Integration, evaluation and applications. Pattern Recogn 30(2):183–196CrossRefGoogle Scholar
  17. 17.
    Vernon D (1991) Machine vision-automated visual inspection and robot vision. NASA STI/Recon Technical Report A, 92.Google Scholar
  18. 18.
    Kingsbury N, Magarey J (1998) Wavelet transforms in image processing. In: Signal analysis and prediction. Birkhäuser, Boston, pp 27–46CrossRefGoogle Scholar
  19. 19.
    Rioul O, Vetterli M (1991) Wavelets and signal processing. IEEE Signal Process Mag 8(ARTICLE):14–38CrossRefGoogle Scholar
  20. 20.
    Mallat S (1999) A wavelet tour of signal processing. Elsevier, San DiegozbMATHGoogle Scholar
  21. 21.
    Mallat SG (1989) A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693zbMATHCrossRefGoogle Scholar
  22. 22.
    Nigam S, Singh R, Misra AK (2018) Efficient facial expression recognition using histogram of oriented gradients in wavelet domain. Multimed Tools Appl 77(21):28725–28747CrossRefGoogle Scholar
  23. 23.
    Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–a multiresolution approach. Inf Fusion 19:49–60CrossRefGoogle Scholar
  24. 24.
    Singh S, Rathore VS, Singh R (2017) Hybrid NSCT domain multiple watermarking for medical images. Multimed Tools Appl 76(3):3557–3575CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybern B Cybern 34(1):34–39CrossRefGoogle Scholar
  26. 26.
    Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92CrossRefGoogle Scholar
  27. 27.
    Usman K, Rajpoot K (2017) Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Applic 20(3):871–881MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu P, Zhang H, Zhang K, Lin L, Zuo W (2018) Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. IEEE, Salt Lake City, pp 773–782Google Scholar
  29. 29.
    Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):e360–e375CrossRefGoogle Scholar
  30. 30.
    Kanarachos S, Christopoulos SRG, Chroneos A, Fitzpatrick ME (2017) Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Syst Appl 85:292–304CrossRefGoogle Scholar
  31. 31.
    Hassairi S, Ejbali R, Zaied M (2015, November) Supervised image classification using deep convolutional wavelets network. In: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI). IEEE, Vietri sul Mare, pp 265–271CrossRefGoogle Scholar
  32. 32.
    Ye JC, Han Y, Cha E (2018) Deep convolutional framelets: A general deep learning framework for inverse problems. SIAM J Imaging Sci 11(2):991–1048MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Diker A, Avci D, Avci E, Gedikpinar M (2019) A new technique for ECG signal classification genetic algorithm wavelet kernel extreme learning machine. Optik 180:46–55CrossRefGoogle Scholar
  34. 34.
    Subasi A, Kevric J, Canbaz MA (2019) Epileptic seizure detection using hybrid machine learning methods. Neural Comput & Applic 31(1):317–325CrossRefGoogle Scholar
  35. 35.
    Ghasemzadeh A, Azad SS, Esmaeili E (2019) Breast cancer detection based on Gabor-wavelet transform and machine learning methods. Int J Mach Learn Cybern 10(7):1603–1612CrossRefGoogle Scholar
  36. 36.
    Khagi B, Kwon GR, Lama R (2019) Comparative analysis of Alzheimer’s disease classification by CDR level using CNN, feature selection, and machine-learning techniques. Int J Imaging Syst Technol 29(3):297–310CrossRefGoogle Scholar
  37. 37.
    Kiaee N, Hashemizadeh E, Zarrinpanjeh N (2019) Using GLCM features in Haar wavelet transformed space for moving object classification. IET Intell Transp Syst 13:1148–1153CrossRefGoogle Scholar
  38. 38.
    Moghaddam HA, Zare A (2019) Spatiotemporal wavelet correlogram for human action recognition. Int J Multimed Inf Retr 8:1–14CrossRefGoogle Scholar
  39. 39.
    Bolouri K, Azmoodeh A, Dehghantanha A, Firouzmand M (2019) Internet of things camera identification algorithm based on sensor pattern noise using color filter array and wavelet transform. In: Handbook of big data and IoT security. Springer, Cham, pp 211–223CrossRefGoogle Scholar
  40. 40.
    Chen YT, Lai WN, Sun EW (2019) Jump detection and noise separation by a singular wavelet method for predictive analytics of high-frequency data. Comput Econ 54:1–36CrossRefGoogle Scholar
  41. 41.
    Aldroubi A, Unser M (1996) Wavelets in medicine and biology. CRC Press, Bosa RocazbMATHGoogle Scholar
  42. 42.
    Dhawas NA, Patil D, Sambhaji A (2019) Invisible video watermarking for data integrity and security based on discrete wavelet transform–a review. Invisible video watermarking for data integrity and security based on discrete wavelet transform–a review (May 18, 2019)Google Scholar
  43. 43.
    Tsakanikas V, Dagiuklas T (2018) Video surveillance systems-current status and future trends. Comput Electr Eng 70:736–753CrossRefGoogle Scholar
  44. 44.
    Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet transforms: A primer, vol 1. Prentice hall, New JerseyGoogle Scholar
  45. 45.
    Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM, WellesleyzbMATHGoogle Scholar
  46. 46.
    Mallat SG (1988) Multiresolution representations and waveletsGoogle Scholar
  47. 47.
    Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872CrossRefGoogle Scholar
  48. 48.
    Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1991) Shiftable multiscale transforms. IEEE Trans Inf Theory 38(2):587–607MathSciNetCrossRefGoogle Scholar
  50. 50.
    Selesnick I, Baraniuk R, Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151CrossRefGoogle Scholar
  51. 51.
    Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872CrossRefGoogle Scholar
  52. 52.
    Gangadhar Y, Akula VG, Reddy PC (2018) An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. Biomed Signal Process Control 43:31–40CrossRefGoogle Scholar
  53. 53.
    Rui T, Zhang Q, Zhou Y, Xing J (2013) Object tracking using particle filter in the wavelet subspace. Neurocomputing 119:125–130CrossRefGoogle Scholar
  54. 54.
    Guo Q, Cao X, Zou Q (2018) Enhanced wavelet convolutional neural networks for visual tracking. J Electron Imaging 27(5):053046CrossRefGoogle Scholar
  55. 55.
    Chan AD, Hamdy MM, Badre A, Badee V (2008) Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Meas 57(2):248–253CrossRefGoogle Scholar
  56. 56.
    Siddiqi M, Ali R, Rana M, Hong EK, Kim E, Lee S (2014) Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors 14(4):6370–6392CrossRefGoogle Scholar
  57. 57.
    Wang J, Xu Z (2016) Spatio-temporal texture modelling for real-time crowd anomaly detection. Comput Vis Image Underst 144:177–187CrossRefGoogle Scholar
  58. 58.
    Goldman AI, Sripada CS (2005) Simulationist models of face-based emotion recognition. Cognition 94(3):193–213CrossRefGoogle Scholar
  59. 59.
    Busso C, Deng Z, Yildirim S, Bulut M, Lee CM, Kazemzadeh A et al (2004) Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceedings of the 6th international conference on multimodal interfaces. ACM, State College, pp 205–211Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajiv Singh
    • 1
  • Swati Nigam
    • 1
  • Amit Kumar Singh
    • 2
  • Mohamed Elhoseny
    • 3
  1. 1.Department of Computer ScienceBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Computer Science & EngineeringNational Institute of TechnologyPatnaIndia
  3. 3.Faculty of Computers and InformationMansoura UniversityDakahliyaEgypt

Personalised recommendations