Advertisement

Prototype of a LPWA Network for Real-Time Hydro-Meteorological Monitoring and Flood Nowcasting

  • Audrey DouinotEmail author
  • Alessandro Dalla Torre
  • Jérôme Martin
  • Jean-François Iffly
  • Laurent Rapin
  • Claude Meisch
  • Christine Bastian
  • Laurent Pfister
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11803)

Abstract

Over the past decade, Luxembourg has experienced an increase in extreme precipitation events during the summer season. As a direct consequence of this evolution, increasingly flashy hydrological responses have been observed in the river network – eventually leading to several flash flood events. In an area that has been historically prone to large scale winter floods, the current flood forecasting and monitoring chain is not adapted to this specific type of events, characterized by small spatial extents (<200 km2), short time scales (<6 h) and high magnitudes. The SIGFOX network deployed in Luxembourg since 2016 provides a unique opportunity to leverage the potential for a Low-Power Wide-Area Network (LPWAN) to implement and operate a hydro-meteorological monitoring system of unprecedented spatial and temporal density. The restricted message size (12 bytes) supported by this technology is suited for the small data sets that are to be transmitted from each monitored hydro-meteorological site. In addition, the inter-connection of the different sensing devices allows for an immediate adaptation of the data acquisition and transmission frequencies – according to rapidly changing hydro-meteorological states. The entire network is able to switch from a sleep and low power consumption mode to a warning mode, with high frequency recordings and transmissions. The initial limit of 140 daily transmissions is eventually compensated for by a systematic compression of the numeric data on the one hand and the switch to cellular transmission during flash flood warning mode. Here we present the prototype implemented in the Ernz Blanche catchment (102 km2), which was successively exposed to flash flood events in 2016 and 2018. The overall set-up consists of 4 raingauges, 4 streamgauges, and 4 soil moisture sensors. The first three months of operation of the prototype monitoring and transmission system on the Ernz Blanche catchment are assessed for validating the data transmission, acquisition, and emergency warning system.

Keywords

IOT LPWAN Flood monitoring Flood forecasting Emergency triggering thresholds 

References

  1. 1.
    Filippo, G., Raffaele, F., Coppola, E.: The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).  https://doi.org/10.5194/esd-10-73-2019CrossRefGoogle Scholar
  2. 2.
    Pfahl, S., O’Gorman, P.A., Fischer, E.M.: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–428 (2017).  https://doi.org/10.1038/NCLIMATE3287CrossRefGoogle Scholar
  3. 3.
    Sillmann, J., et al.: Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extremes 18, 65–74 (2017).  https://doi.org/10.1016/j.wace.2017.10.003CrossRefGoogle Scholar
  4. 4.
    Tandon, N.F., Zhang, X., Sobel, A.H.: Understanding the dynamics of future changes in extreme precipitation intensity. Geophys. Res. Lett. 45, 2870–2878 (2018).  https://doi.org/10.1002/2017GL076361CrossRefGoogle Scholar
  5. 5.
    Scherrer, S.C., Fischer, E.M., Posselt, R., Liniger, M.A., Croci Maspoli, M., Knutti, R.: Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J. Geophys. Res. Atmos. 121, 2626–2637 (2016).  https://doi.org/10.1002/2015JD024634CrossRefGoogle Scholar
  6. 6.
    Hanel, M., Pavlásková, A., Kyselý, J.: Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic. Int. J. Climatol. 36, 1833–1845 (2016).  https://doi.org/10.1002/joc4463CrossRefGoogle Scholar
  7. 7.
    Pińskwar, I., Choryński, A., Graczyk, D., Kundzewicz, Z.W.: Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theoret. Appl. Climatol. 135(1), 773–787 (2019).  https://doi.org/10.1007/s00704-018-2372-1CrossRefGoogle Scholar
  8. 8.
    Marani, M., Zanetti, S.: Long-term oscillations in rainfall extremes in a 268 year daily time series. Water Resour. Res. 51(1), 639–647 (2015).  https://doi.org/10.1002/2014WR015885CrossRefGoogle Scholar
  9. 9.
    Irannezhad, M., Marttila, H., Chen, D., Kløve, B.: Century-long variability and trends in daily precipitation characteristics at three Finnish stations. Adv. Clim. Change Res. 7(1), 54–69 (2016).  https://doi.org/10.1016/j.accre.2016.04.004CrossRefGoogle Scholar
  10. 10.
    Gregersen, I.B., Madsen, H., Rosbjerg, D., Arnbjerg-Nielsen, K.: Long term variations of extreme rainfall in Denmark and Southern Sweden. Clim. Dyn. 44(11), 3155–3169 (2015).  https://doi.org/10.1007/s00382-014-2276-4CrossRefGoogle Scholar
  11. 11.
    Blöschl, G., et al.: Increasing river floods: fiction or reality? Wiley Interdiscip. Rev. Water 2(4), 329–344 (2015).  https://doi.org/10.1002/wat2.1079CrossRefGoogle Scholar
  12. 12.
    Merz, B., et al.: Spatial coherence of flood-rich and flood-poor periods across Germany. J. Hydrol. 559, 813–826 (2018).  https://doi.org/10.1016/j.jhydrol.2018.02.082CrossRefGoogle Scholar
  13. 13.
    Pfister, L., Douinot, A., Meisch, C., Bastian, C., Tamez, C.: Recent extreme hydro-meteorological events in North-Western Central Europe (Luxembourg): extreme hydrological features, meteorological factors and atmospheric conditions. In: EGU (2019). https://meetingorganizer.copernicus.org/EGU2019/EGU2019-13457.pdf
  14. 14.
    Barredo, J.I.: Major flood disasters in Europe: 1950–2005. Nat. Hazards 42(1), 125–148 (2007).  https://doi.org/10.1007/s11069-006-9065-2CrossRefGoogle Scholar
  15. 15.
    Marchi, L., Borga, M., Preciso, E., Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 394(1–2), 118–133 (2010).  https://doi.org/10.1016/j.jhydrol.2010.07.017CrossRefGoogle Scholar
  16. 16.
    Amponsah, W., et al.: Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst. Sci. Data 10(4), 1783–1794 (2018).  https://doi.org/10.5194/essd-10-1783-2018CrossRefGoogle Scholar
  17. 17.
    Van Campenhout, J., et al.: Flash floods and muddy floods in Wallonia: recent temporal trends, spatial distribution and reconstruction of the hydrosedimentological fluxes using flood marks and sediment deposits. Belgeo. Revue Belge de Géographie (1) (2015)Google Scholar
  18. 18.
    Brauer, C.C., et al.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment. Hydrol. Earth Syst. Sci. 15(6), 1991–2005 (2011).  https://doi.org/10.5194/hess-15-1991-2011CrossRefGoogle Scholar
  19. 19.
    Piper, D., et al.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background. Nat. Hazards Earth Syst. Sci. 16(12), 2835–2850 (2016).  https://doi.org/10.5194/nhess-16-2835-2016CrossRefGoogle Scholar
  20. 20.
    Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., Ehret, U.: Extreme flood response to short-duration convective rainfall in South-West Germany. Hydrol. Earth Syst. Sci. 16(5), 1543–1559 (2012). http://www.hydrol-earth-syst-sci.net/16/1543/2012/hess-16-1543-2012.htmlCrossRefGoogle Scholar
  21. 21.
    Davolio, S., Buzzi, A., Malguzzi, P.: High resolution simulations of an intense convective precipitation event. Meteorol. Atmos. Phys. 95(3–4), 139–154 (2007).  https://doi.org/10.1007/s00703-006-0200-0CrossRefGoogle Scholar
  22. 22.
    Jacobi, S., Heistermann, M.: Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany. Geomat. Nat. Hazards Risk 7(6), 1785–1799 (2016).  https://doi.org/10.1080/19475705.2016.1155080CrossRefGoogle Scholar
  23. 23.
    Lauridsen, M., Nguyen, H., Vejlgaard, B., Kovacs, I.Z., Mogensen, P., Sorensen, M.: Coverage comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km2 area. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2017).  https://doi.org/10.1109/VTCSpring.2017.8108182
  24. 24.
    ICT Experts Luxembourg, Rapin, L.: Iot: La guerre des réseaux aura t’elle lieu? https://ictexpertsluxembourg.lu/digital-media/iot-guerre-reseaux-aura-t-lieu/. Accessed 01 May 2019
  25. 25.
    SigFox. https://www.sigfox.com. Accessed 01 May 2019
  26. 26.
    Kausch, B., Maquil, R.: Landscapes and landforms of the Luxembourg Sandstone, Grand-Duchy of Luxembourg. In: Demoulin, A. (ed.) Landscapes and Landforms of Belgium and Luxembourg. WGL, 1st edn, pp. 43–62. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-58239-9_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Audrey Douinot
    • 1
    Email author
  • Alessandro Dalla Torre
    • 2
  • Jérôme Martin
    • 2
  • Jean-François Iffly
    • 1
  • Laurent Rapin
    • 2
  • Claude Meisch
    • 3
  • Christine Bastian
    • 3
  • Laurent Pfister
    • 1
  1. 1.ERIN Department, Catchment and Eco-Hydrology Research GroupLuxembourg Institute of Science and TechnologyEsch-sur-AlzetteLuxembourg
  2. 2.IoT Business SolutionsPOST TelecomLuxembourg CityLuxembourg
  3. 3.Administration de la gestion de l’eauEsch-sur-AlzetteLuxembourg

Personalised recommendations