Advertisement

On the Interplay Between 5G, Mobile Edge Computing and Robotics in Smart Agriculture Scenarios

  • Giovanni Valecce
  • Sergio Strazzella
  • Luigi Alfredo GriecoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11803)

Abstract

The relentless growth of the human population over the time is driving an exceptional rise in food demand. Improving the efficiency of farming processes is the only way to face the so called Malthusian catastrophe. This objective could be pursued by automating production processes in farms. Robots can play a key role in this context, especially when they can execute tasks on collaborative basis. At the same time, low latency communication capabilities are required to translate in reality the robotic-aided smart agriculture vision. This contribution explores the interplay of 5G, Internet of Things (IoT), and Mobile Edge Computing (MEC) as enabling drivers for technology spread in the agriculture domain, based on Industry 4.0 principles. In particular, some key performance indicators have been investigated for a rural-area scenario, exploring different technological configurations.

Keywords

Smart agriculture Robotics 5G MEC IoT 

Notes

Acknowledgment

This work was partially founded by Italian MIUR PON projects Pico&Pro (ARS01_01061), AGREED (ARS01_00254), FURTHER (ARS01_01283), RAFAEL (ARS01_00305) and by Apulia Region (Italy) Research Project E-SHELF (OSW3NO1).

References

  1. 1.
    Bruinsma, J.: World agriculture: Towards 2015/2030: An FAO Study. Routledge, Abingdon (2017)Google Scholar
  2. 2.
    Hajjaj, S.S.H., Sahari, K.S.M.: Review of research in the area of agriculture mobile robots. In: Mat Sakim, H., Mustaffa, M. (eds.) The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Lecture Notes in Electrical Engineering, vol. 291, pp. 107–117. Springer, Singapore (2014).  https://doi.org/10.1007/978-981-4585-42-2_13CrossRefGoogle Scholar
  3. 3.
    Duckett, T., Pearson, S., Blackmore, S., Grieve, B., Smith, M.: White paper-agricultural robotics: the future of robotic agriculture (2018)Google Scholar
  4. 4.
    U. S. D. of Agriculture, Usda agricultural projections to 2024. (2015)Google Scholar
  5. 5.
    Duckett, T., Pearson, S., Blackmore, S., Grieve, B.: Agricultural robotics: the future of robotic agriculture. arXiv preprint arXiv:1806.06762 (2018)
  6. 6.
    Hajjaj, S.S.H., Sahari, K.S.M.: Review of agriculture robotics: practicality and feasibility. In: 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 194–198, December 2016Google Scholar
  7. 7.
    Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016)CrossRefGoogle Scholar
  8. 8.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  9. 9.
    Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–1611 (2013)CrossRefGoogle Scholar
  10. 10.
    Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion (2013)Google Scholar
  11. 11.
    Global agriculture towards 2050, in How to Feed the World in 2050. FAO High-Level Expert Forum, Rome (2009)Google Scholar
  12. 12.
    Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 30(3), 291–319 (2018)Google Scholar
  13. 13.
    Kashiwazaki, K., Sugahara, Y., Iwasaki, J., Kosuge, K., Kumazawa, S., Yamashita, T.: Greenhouse partner robot system. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–8, June 2010Google Scholar
  14. 14.
    Feng, Q., Wang, X., Wang, G., Li, Z.: Design and test of tomatoes harvesting robot. In: 2015 IEEE International Conference on Information and Automation, pp. 949–952, August 2015Google Scholar
  15. 15.
    Naik, N.S., Shete, V.V., Danve, S.R.: Precision agriculture robot for seeding function. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp. 1–3, Augut 2016Google Scholar
  16. 16.
    Cheein, F.A., et al.: Human-robot interaction in precision agriculture: sharing the workspace with service units. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 289–295, March 2015Google Scholar
  17. 17.
    Shafi, M., et al.: 5g: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5g networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)CrossRefGoogle Scholar
  19. 19.
    Voigtländer, F., Ramadan, A., Eichinger, J., Lenz, C., Pensky, D., Knoll, A.: 5g for robotics: ultra-low latency control of distributed robotic systems. In: 2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pp. 69–72, October 2017Google Scholar
  20. 20.
    Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., Taleb, T.: Survey on multi-access edge computing for internet of things realization. arXiv preprint arXiv:1805.06695 (2018)
  21. 21.
    Dey, S., Mukherjee, A.: Robotic slam: a review from fog computing and mobile edge computing perspective. In: Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services, pp. 153–158. ACM (2016)Google Scholar
  22. 22.
    Bastug, E., Bennis, M., Médard, M., Debbah, M.: Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun. Mag. 55(6), 110–117 (2017)CrossRefGoogle Scholar
  23. 23.
    Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5g networks: New paradigms, scenarios, and challenges. arXiv preprint arXiv:1612.03184 (2016)
  24. 24.
    Ryu, C., Suguri, M., Iida, M., Umeda, M., Lee, C.: Integrating remote sensing and gis for prediction of rice protein contents. Prec. Agric. 12(3), 378–394 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhang, C., Walters, D., Kovacs, J.M.: Applications of low altitude remote sensing in agriculture upon farmers’ requests-a case study in northeastern ontario, Canada. PloS one 9(11), e112894 (2014)CrossRefGoogle Scholar
  26. 26.
    Gevaert, C.M., Suomalainen, J., Tang, J., Kooistra, L.: Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8(6), 3140–3146 (2015)CrossRefGoogle Scholar
  27. 27.
    Manna irrigation — remote sensing - manna irrigation. https://manna-irrigation.com/remote-sensing/
  28. 28.
    Chiaraviglio, L., Amorosi, L., Blefari-Melazzi, N., Dell’Olmo, P., Natalino, C., Monti, P.: Optimal design of 5g networks in rural zones with UAVs, optical rings, solar panels and batteries. In: 2018 20th International Conference on Transparent Optical Networks (ICTON), pp. 1–4. IEEE, (2018)Google Scholar
  29. 29.
    Merwaday, A., Guvenc, I.: Uav assisted heterogeneous networks for public safety communications. In: 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 329–334. IEEE (2015)Google Scholar
  30. 30.
    Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016)CrossRefGoogle Scholar
  31. 31.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giovanni Valecce
    • 1
    • 2
    • 3
  • Sergio Strazzella
    • 2
  • Luigi Alfredo Grieco
    • 1
    • 3
    Email author
  1. 1.Department of Electrical and Information Engineering (DEI)Politecnico di BariBariItaly
  2. 2.Sf System srlCarosinoItaly
  3. 3.CNIT, Consorzio Nazionale Interuniversitario per le TelecomunicazioniPolitecnico di BariBariItaly

Personalised recommendations