Advertisement

Introduction

  • Artur Struzik
Chapter

Abstract

Despite many years of research on the phenomenon of vertical jumps, some questions and problems remain unsettled. Simplified interpretations of physical measures for describing human movement may fail to reflect results, as expected based on the laws of physics. Due to changes in the importance and function of jumping in human life over the years, continued research is necessary to provide more details regarding the processes that occur during this movement, at least with respect to the usefulness of vertical jumps in sports. This chapter explains the basic properties of human skeletal muscles with respect to elasticity. The elasticity phenomenon can be illustrated as an idealised spring with linear characteristics. Stretched elastic elements store potential elastic energy that is released when the spring returns to its original length. The musculotendinous groups in the human body similarly have the ability to accumulate and recover potential elastic energy. For example, performing a countermovement before take-off during a vertical jump leads to the rapid extension of musculotendinous groups before contraction; this action accumulates potential elastic energy and, consequently, impacts jump height.

Keywords

Biomechanics Countermovement jump Elasticity Energy accumulation Force Hooke’s law Human movement Jumping abilities Locomotion Motion system Muscle properties Potential elastic energy Sport Spring Stiffness Stretch-shortening cycle Vertical jump 

References

  1. Aragón-Vargas LF, Gross MM (1997) Kinesiological factors in vertical jump performance: differences within individuals. J Appl Biomech 13(1):45–65.  https://doi.org/10.1123/jab.13.1.45CrossRefGoogle Scholar
  2. Bober T (1964) The problem of jumping ability in the light of biomechanical analysis. Rozprawy Naukowe Wyższej Szkoły Wychowania Fizycznego we Wrocławiu 3:61–112Google Scholar
  3. Bober T (1966) Critical assessment of the result of upward standing jump as a criterion of power. Wychowanie Fizyczne i Sport 10(4):61–69Google Scholar
  4. Bober T (1968) Cooperation of selected limb joints in maintaining optimum trajectory of movement during take-off. Wychowanie Fizyczne i Sport 12(2):31–39Google Scholar
  5. Bober T (1995) Działanie mięśni w cyklu rozciągnięcie-skurcz a skuteczność techniki sportowej. Sport Wyczynowy 1–2(361–362):40–50Google Scholar
  6. Bober T, Zawadzki J (2006) Biomechanika układu ruchu człowieka. Wydawnictwo BK, WrocławGoogle Scholar
  7. Bober T, Jaskólski E, Nowacki Z (1980) Study on eccentric-concentric contraction of the upper extremity muscles. J Biomech 13(2):135–138.  https://doi.org/10.1016/0021-9290(80)90187-6CrossRefPubMedGoogle Scholar
  8. Bober T, Rutkowska-Kucharska A, Pietraszewski B (2007) Ćwiczenia plyometryczne – charakterystyka biomechaniczna, wskaźniki, zastosowania. Sport Wyczynowy 7–9(511–513):5–23Google Scholar
  9. Erdmann WS (2012) Polish biomechanics in the 20th century. In: Będziński R, Sajewicz E, Piszczatowski S (eds) Biomechanics 2012: International Conference of the Polish Society of Biomechanics, 30th Anniversary Meeting of the Polish Biomechanics., 16–19.09.2012 Białystok: book of abstracts. Oficyna Wydawnicza Politechniki Białostockiej, Białystok, pp 69–70Google Scholar
  10. Farley CT, Blickhan R, Saito J et al (1991) Hopping frequency in humans: a test of how springs set frequency in bouncing gaits. J Appl Physiol 71(6):2127–2132.  https://doi.org/10.1152/jappl.1991.71.6.2127CrossRefPubMedGoogle Scholar
  11. Hudson JL (1990) Performance excellence: drop, stop, pop: keys to vertical jumping. Strategies 3(6):11–14.  https://doi.org/10.1080/08924562.1990.11000256CrossRefGoogle Scholar
  12. Komi PV, Gollhofer A (1997) Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech 13(4):451–459.  https://doi.org/10.1123/jab.13.4.451CrossRefGoogle Scholar
  13. Kuszewski M, Saulicz E, Gnat R (2008) Possible paradox: muscle stiffness – indispensable or undesirable? Physiotherapy 16(1):92–98.  https://doi.org/10.2478/v10109-009-0010-2CrossRefGoogle Scholar
  14. Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic, AmsterdamGoogle Scholar
  15. McClay IS, Robinson JR, Andriacchi TP et al (1994) A profile of ground reaction forces in professional basketball. J Appl Biomech 10(3):222–236.  https://doi.org/10.1123/jab.10.3.222CrossRefGoogle Scholar
  16. Moran KA, Wallace ES (2007) Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Hum Mov Sci 26(6):824–840.  https://doi.org/10.1016/j.humov.2007.05.001CrossRefPubMedGoogle Scholar
  17. Mrdakovic V, Ilic D, Vulovic R et al (2014) Leg stiffness adjustment during hopping at different intensities and frequencies. Acta Bioeng Biomech 16(3):69–76.  https://doi.org/10.5277/abb140308CrossRefPubMedGoogle Scholar
  18. Nosiadek L (2009) Ćwiczenia plyometryczne w kształtowaniu dyspozycji siłowych – zalety i niebezpieczeństwa. Sport Wyczynowy 2/530:80–87Google Scholar
  19. Serpell BG, Ball NB, Scarvell JM et al (2012) A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sport Sci 30(13):1347–1363.  https://doi.org/10.1080/02640414.2012.710755CrossRefGoogle Scholar
  20. Struzik A, Zawadzki J (2013) Leg stiffness during phases of countermovement and take-off in vertical jump. Acta Bioeng Biomech 15(2):113–118.  https://doi.org/10.5277/abb130213CrossRefPubMedGoogle Scholar
  21. Struzik A, Zawadzki J (2016) Application of force-length curve for determination of leg stiffness during a vertical jump. Acta Bioeng Biomech 18(2):163–171.  https://doi.org/10.5277/ABB-00401-2015-02CrossRefPubMedGoogle Scholar
  22. Struzik A, Zawadzki J, Pietraszewski B (2015) Balance disorders caused by running and jumping occurring in young basketball players. Acta Bioeng Biomech 17(2):103–109.  https://doi.org/10.5277/ABB-00097-2014-02CrossRefPubMedGoogle Scholar
  23. Struzik A, Pietraszewski B, Kawczyński A et al (2017) Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6):1694–1701.  https://doi.org/10.1519/JSC.0000000000001868CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tihanyi J (2008) Muscle elastic energy utilization and facilitation in some strength related exercises: the role of patellar tendon. In: Bober T, Siemieński A (eds) Contemporary biomechanics: selected topics. International Congress of the Polish Society of Biomechanics “Biomechanics ‘08” Wrocław. Wydawnictwo Akademii Wychowania Fizycznego, Wrocław, pp 49–59Google Scholar
  25. Wilson JM, Flanagan EP (2008) The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res 22(5):1705–1715.  https://doi.org/10.1519/JSC.0b013e31817ae4a7CrossRefPubMedGoogle Scholar
  26. Zawadzki J (2006) Dependence of elbow joint stiffness on flexors and extensors muscle tension. Annales Universitatis Mariae Curie-Skłodowska, Medicina 60(8 suppl. 16):452–455Google Scholar
  27. Zawadzki J, Siemieński A (2010) Maximal frequency, amplitude, kinetic energy and elbow joint stiffness in cyclic movements. Acta Bioeng Biomech 12(2):55–64PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Artur Struzik
    • 1
  1. 1.University School of Physical EducationWrocławPoland

Personalised recommendations