New Optimizations and Heuristics for Determinization of Büchi Automata
Conference paper
First Online:
Abstract
In this work, we present multiple new optimizations and heuristics for the determinization of Büchi automata that exploit a number of semantic and structural properties, most of which may be applied together with any determinization procedure. We built a prototype implementation where all the presented heuristics can be freely combined and evaluated them, comparing our implementation with the state-of-the-art tool spot on multiple data sets with different characteristics. Our results show that the proposed optimizations and heuristics can in some cases significantly decrease the size of the resulting deterministic automaton.
Keywords
Büchi Parity Automata Determinization HeuristicsReferences
- 1.Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 262–272. Springer, Heidelberg (2006). https://doi.org/10.1007/11605157_22CrossRefzbMATHGoogle Scholar
- 2.Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
- 3.Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 611–625. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_50CrossRefGoogle Scholar
- 4.Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Studies in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier (1966)Google Scholar
- 5.Carton, O., Maceiras, R.: Computing the Rabin index of a parity automaton. RAIRO-Theoret. Inform. Appl. 33(6), 495–505 (1999)MathSciNetCrossRefGoogle Scholar
- 6.Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transition labeled Büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 151–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_13CrossRefzbMATHGoogle Scholar
- 7.Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_31CrossRefGoogle Scholar
- 8.Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8CrossRefGoogle Scholar
- 9.Esparza, J., Křetínský, J., Raskin, J.-F., Sickert, S.: From LTL and limit-deterministic Büchi automata to deterministic parity automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 426–442. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_25CrossRefGoogle Scholar
- 10.Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_13CrossRefGoogle Scholar
- 11.Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)MathSciNetCrossRefGoogle Scholar
- 12.Fisman, D., Lustig, Y.: A modular approach for Büchi determinization. In: CONCUR 2015. LIPIcs (2015)Google Scholar
- 13.Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)CrossRefGoogle Scholar
- 14.Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6CrossRefGoogle Scholar
- 15.Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006). https://doi.org/10.1007/11691617_4CrossRefzbMATHGoogle Scholar
- 16.Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of Machines and Computations, pp. 189–196. Elsevier (1971)Google Scholar
- 17.Jacobs, S., et al.: The 4th reactive synthesis competition (syntcomp 2017): benchmarks, participants & results. arXiv preprint arXiv:1711.11439 (2017)
- 18.Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_59CrossRefzbMATHGoogle Scholar
- 19.Klein, J.: Linear time logic and deterministic omega-automata. Diploma thesis, University of Bonn (2005)Google Scholar
- 20.Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic \(\omega \)-automata. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_7CrossRefzbMATHGoogle Scholar
- 21.Křetínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30CrossRefGoogle Scholar
- 22.Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic automata. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS (LNAI), vol. 6572, pp. 85–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20674-0_6CrossRefGoogle Scholar
- 23.Kupferman, O., Vardi, M.Y.: From linear time to branching time. TOCL 6, 273–294 (2005)MathSciNetCrossRefGoogle Scholar
- 24.Löding, C., Pirogov, A.: Determinization of Büchi automata: unifying the approaches of Safra and Muller-Schupp. ICALP 2019 https://arxiv.org/abs/1902.02139
- 25.McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control 9(5), 521–530 (1966)MathSciNetCrossRefGoogle Scholar
- 26.Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes back!. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31CrossRefGoogle Scholar
- 27.Michel, M.: Complementation is more difficult with automata on infinite words. Manuscript, CNET, Paris (1988)Google Scholar
- 28.Miyano, S., Hayashi, T.: Alternating finite automata on \(\omega \)-words. Theoret. Comput. Sci. 32(3), 321–330 (1984)MathSciNetCrossRefGoogle Scholar
- 29.Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: GandALF 2017Google Scholar
- 30.Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: new results and new proofs of the theorems of Rabin, McNaughton and Safra. Theoret. Comput. Sci. 141(1–2), 69–107 (1995)MathSciNetCrossRefGoogle Scholar
- 31.Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS 2006. IEEE (2006)Google Scholar
- 32.Pnueli, A.: The temporal logic of programs. In: 1977 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
- 33.Redziejowski, R.R.: An improved construction of deterministic omega-automaton using derivatives. Fundamenta Informaticae 119(3–4), 393–406 (2012)MathSciNetzbMATHGoogle Scholar
- 34.Safra, S.: On the complexity of omega-automata. In: 1988 29th Annual Symposium on Foundations of Computer Science, pp. 319–327. IEEE (1988)Google Scholar
- 35.Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_13CrossRefzbMATHGoogle Scholar
- 36.Tabakov, D., Vardi, M.Y.: Optimized temporal monitors for systemC. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 436–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_33CrossRefGoogle Scholar
- 37.Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–192. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
- 38.Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7CrossRefGoogle Scholar
- 39.Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–655. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1_35CrossRefGoogle Scholar
- 40.Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and Automata - History and Perspectives, Texts in Logic and Games, vol. 2, pp. 629–724. Amsterdam University Press (2007)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019