Advertisement

The Science of Preconception

  • Jeffrey Hoek
  • Régine Steegers-Theunissen
  • Kevin Sinclair
  • Sam Schoenmakers
Chapter
  • 25 Downloads

Abstract

The chance of a successful pregnancy and healthy offspring is largely determined by the state of maternal but also paternal health during the periconception period, which starts at least 14 weeks before conception until 10 weeks afterward (12 weeks of gestation). Massive cell multiplication, differentiation, and programming processes of gametes and (extra) embryonic tissues during these 6 months around conception mean that these tissues are particularly sensitive for genetic and/or environmental exposures. Obstetric care mostly starts only at around 8–10 weeks of gestational age with a first ultrasound scan by a midwife or obstetrician, thereby missing the opportunity of prevention and treatment of harmful exposures, in order to optimize periconception health conditions. To emphasize the importance of preconception care, this chapter gives an overview of the biology of gametogenesis, embryogenesis, and placentation as determinants of the success of pregnancy course and outcome and health of the offspring during the life course. Because achieving a healthy lifestyle is one of the most important preventive measures in preconception care, the impact of maternal as well as paternal lifestyle on outcomes largely determined in the periconception period will be discussed.

Keywords

Maternal health Paternal health Gametogenesis (oogenesis and spermatogenesis) Periconception period Embryogenesis Placentation Microbiome Nutrition and lifestyle 

References

  1. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.CrossRefGoogle Scholar
  2. Ashworth CJ, Toma LM, Hunter MG. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1534):3351–61.CrossRefGoogle Scholar
  3. Hoek J, Koster MPH, Schoenmakers S, Willemsen SP, Koning AHJ, Steegers EAP, et al. Does the father matter? The association between the periconceptional paternal folate status and embryonic growth. Fertil Steril. 2019;111(2):270–9.CrossRefGoogle Scholar
  4. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14.CrossRefGoogle Scholar
  5. Koedooder R, Mackens S, Budding A, Fares D, Blockeel C, Laven J, et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update. 2019;25(3):298–325.CrossRefGoogle Scholar
  6. Reijnders IF, Mulders A, van der Windt M, Steegers EAP, Steegers-Theunissen RPM. The impact of periconceptional maternal lifestyle on clinical features and biomarkers of placental development and function: a systematic review. Hum Reprod Update. 2019;25(1):72–94.CrossRefGoogle Scholar
  7. Rousian M, Koster MPH, Mulders A, Koning AHJ, Steegers-Theunissen RPM, Steegers EAP. Virtual reality imaging techniques in the study of embryonic and early placental health. Placenta. 2018;64(Suppl 1):S29–35.CrossRefGoogle Scholar
  8. Steegers-Theunissen RP, Verheijden-Paulissen JJ, van Uitert EM, Wildhagen MF, Exalto N, Koning AH, et al. Cohort profile: the Rotterdam Periconceptional Cohort (Predict Study). Int J Epidemiol. 2016;45(2):374–81.CrossRefGoogle Scholar
  9. Van Dijk MR, Borggreven NV, Willemsen SP, Koning AHJ, Steegers-Theunissen RPM, Koster MPH. Maternal lifestyle impairs embryonic growth: the Rotterdam periconception cohort. Reprod Sci. 2018;25(6):916–22.CrossRefGoogle Scholar
  10. van Uitert EM, Steegers-Theunissen RP. Influence of maternal folate status on human fetal growth parameters. Mol Nutr Food Res. 2013;57(4):582–95.CrossRefGoogle Scholar
  11. van Uitert EM, van Ginkel S, Willemsen SP, Lindemans J, Koning AH, Eilers PH, et al. An optimal periconception maternal folate status for embryonic size: the Rotterdam Predict study. BJOG. 2014;121(7):821–9.CrossRefGoogle Scholar
  12. Wyck S, Herrera C, Requena CE, Bittner L, Hajkova P, Bollwein H, et al. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics Chromatin. 2018;11(1):60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jeffrey Hoek
    • 1
  • Régine Steegers-Theunissen
    • 1
  • Kevin Sinclair
    • 2
  • Sam Schoenmakers
    • 1
  1. 1.Department of Obstetrics and GynecologyErasmus MC – University Medical Centre RotterdamRotterdamThe Netherlands
  2. 2.School of BiosciencesUniversity of NottinghamNottinghamUK

Personalised recommendations