Simple Method to Visualize Surface and Space Charges by Specially Processed Colour Pigments

  • Thomas HueckerEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 598)


HVDC applications are getting globally more and more important for the energy transport in the high voltage networks. To design apparatus properly it is important to understand the space and surface charges that are accumulating under DC stress in certain areas. Existing methods to measure or visualize such charge accumulations like “Pressure Wave Propagation Method”, “Thermal Step Method”, “Pulsed Electro Acoustic Method” or “Electro Static Volt Meters” show often limitations applied to full size apparatus. Sometimes the resolution or specimen thickness is limited or the application can be rather time consuming or complex. A simple method to visualize surface charges is known as “Lichtenberg’s dust figures”. It is known since hundreds of years but rarely practiced as the best working chemicals (yellow sulphur and red lead) are not health save. In this paper a fresh view is given to charge visualization by colour pigments. It is shown that different pigments attach to positive or negative charges. The application of this method is easy and takes just a view seconds. E.g. tree type structures can be visualized with a resolution of less than 1 mm. Hover the value of the charge magnitude cannot be obtained. The surface charge behaviour on different materials like Epoxy, PE-HD, Silicone is shown. In addition, the possibility of space charge visualization on specimen cross sections is discussed.


HVDC Surface charges Space charges Visualization 


  1. 1.
    IEEE STd 1732: IEEE recommended practice for space charge measurements on high voltage direct current extruded cables for rated voltages up to 550 kV. In: IEEE Dielectrics and Electrical Insulation society (2017)Google Scholar
  2. 2.
    Küchler, A.: Ausbildung Elektrischer Felder Bei Gleichspannungsbelastung. RCC-Tagungsbericht, Berlin (2015)Google Scholar
  3. 3.
    Krause, J.: Raumladungen Ladungsträger-Beweglichkeit und Dielektrische Vorgänge in Polymeren Werkstoffen. RCC-Tagungsbericht, Berlin (2015)Google Scholar
  4. 4.
    Fuchs, K., Berger, F.: Modellierung von Raumla-Dungen auf die Elektrische Feldstärke in VPE-Kabeln unter Hochspannungsgleichstrombean-spruchung. RCC-Tagungsbericht, Berlin (2015)Google Scholar
  5. 5.
    Gockenbach, E.: Prüfmethoden und Diagnoseverfahren für den Einsatz von Polymeren Isolierstoffen in Kabeln der Hochspannungsgleichstromübertragung. RCC-Tagungsbericht, Berlin (2015)Google Scholar
  6. 6.
    Zhao, N., et al.: Effect of O2/F2/N2 on space charge behaviour of low density polyethylene. In: Proceedings of 19th ISH 2015, Pilsen, CZ (2015)Google Scholar
  7. 7.
    Herbst, H.: Industrial Organic Pigments: Production, Properties, Applications. Wiley, Weinheim (2004)CrossRefGoogle Scholar
  8. 8.
    Kumada, A., Okabe, S.: Charge distribution measurement on a truncated cone spacer under dc voltage. IEEE Trans. Dielectr. Electr. Insul. 11(6), 929–938 (2004)CrossRefGoogle Scholar
  9. 9.
    Su, G.Q., Wang, Y.B., Guo, B.H., Song, B.P., Mu, H.B., Zhang, G.J.: Experimental investigation of surface charge accumulation behaviours on PTFE insulator under DC and impulse voltage in vacuum. IEEE Trans. Dielectr. Electr. Insul. 24(6), 3347–3356 (2017)CrossRefGoogle Scholar
  10. 10.
    Takabayashi, K., Nakane, R., Okubo, H.: HVDC partial discharge mechanisms and flashover characteristics with charging activities on solid insulators in air. In: IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), Fort Worth, TX, USA (2017)Google Scholar
  11. 11.
    Schueller, M., Straumann, U., Franck, C.: Role of ion sources for spacer charging in SF6 gas insulated HVDC systems. IEEE Trans. Dielectr. Electr. Insul. 21(1), 352–359 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhang, B., Gao, W., Qi, Z., Wang, Q., Zhang, G.: Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement. IEEE Trans. Instrum. Meas. 66(12), 3316–3326 (2017)CrossRefGoogle Scholar
  13. 13.
    Winter, A., Kindersberger, J.: Stationary resistive field distribution along epoxy resin insulators in air under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 19(5), 1732–1739 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, B., Qi, Z., Zhang, G.: Thermal gradient effects on surface charge of HVDC spacer in gas insulated system. In: IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 703–706 (2016)Google Scholar
  15. 15.
    Lichtenberg, G.C.: De Nova Methodo Naturam Ac Motum Fluidi Electrici Investigandi (Göttinger Novi Commentarii, Göttingen (1777)Google Scholar
  16. 16.
    Wolf, T.: Nachweis von Raum und Oberflächenladungen in Geläufigen Isolierwerkstoffen mit Farbpigmenten. Masterarbeit HTW, Berlin (2017)Google Scholar
  17. 17.
    Sam, Y.L., Lewin, P.L.: Dynamic measurement of surface charge, dielectric materials, measurements and applications. In: Eighth International Conference on (IEE Conf. Publ. No. 473) (2000)Google Scholar
  18. 18.
    Fouracre, R.A., Santos, E.: Surface discharge propagation: the influence of surface charge, power modulator symposium. In: Conference Record of the 2006 Twenty-Seventh International (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Applied Sciences – HTW BerlinBerlinGermany

Personalised recommendations