Advertisement

Current and Electric Field Characteristics of 35 Return Strokes from Negative Lightning Measured at Peissenberg Tower Germany

  • Christian PaulEmail author
  • Fridolin H. Heidler
  • Wolfgang Schulz
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 598)

Abstract

In this paper, we analyse the currents and electric fields of 35 negative return strokes, which have been measured since 2012 at Peissenberg Tower, Germany. 27 were pure return strokes and 8 were return strokes with superimposed symmetrical M-components. 2 out of this 8 were first return strokes. The measured peak currents ranged from 3.1 kA to 40.8 kA, the arithmetic mean value (AM) was 12.3 kA. Further we estimated the 10%-to-90% rise time, which ranged from 1.0 µs to 7.4 µs, the AM was 1.9 µs. The transferred charge varied from 0.1 C to 10.6 C, the AM was 1.0 C. The radiated electric field was measured in a distance of about 180 m to the tower. The electric field exhibits a first field change due to the descending leader. For the description of this first field change we introduced ∆E1. The values of ∆E1 varied from 0.8 kV/m to 10 kV/m, the AM was 2.8 kV/m. The first field change is immediately followed by a second field change of opposite polarity. We introduced ∆E2 to describe this field change, which is caused by the return stroke process. The values of ∆E2 varied from 1 kV/m to 14.2 kV/m, the AM was 3.5 kV/m. All analysed return strokes were detected by the lightning location system (LLS) EUCLID. The peak current inferred by EUCLID varied between 3.9 kA and 53.0 kA, the AM was 15.0 kA. 10 out of 35 detected return strokes were misclassified as cloud-to-cloud discharge.

Keywords

Lightning Return stroke Electric field Peissenberg tower Lightning location (LLS) EUCLID 

Notes

Acknowledgement

We thank EUCLID for providing the LLS data for this study.

References

  1. 1.
    Berger, K.: Novel observations on lightning discharges: results of research on Mount San Salvatore. J. Franklin Inst. 283(6), 478–525 (1967)CrossRefGoogle Scholar
  2. 2.
    Rakov, V.A., Uman, M.A.: Lightning: Physics and Effects. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Shindo, T., Uman, M.A.: Continuing current in negative cloud-to-ground lightning. J. Geophys. Res. 94(D4), 5189–5198 (1989)CrossRefGoogle Scholar
  4. 4.
    Rakov, V.A., Uman, M.A.: Long continuing current in negative lightning ground flashes. J. Geophys. Res. 95(D5), 5455–5470 (1990)CrossRefGoogle Scholar
  5. 5.
    Cooray, V.: Lightning electromagnetics. The Institution of Engineering and Technology, London (2012)CrossRefGoogle Scholar
  6. 6.
    Paul, C., Heidler, F.H.: Properties of three types of M-components and ICC-pulses from currents of negative upward lightning measured at the Peissenberg Tower. IEEE Trans. EMC 59(60), 1825–1832 (2018).  https://doi.org/10.1109/temc.2018.2802720CrossRefGoogle Scholar
  7. 7.
    Malan, D.J., Collens, H.: Progressive lightning III - the fine structure of return lightning stroke. Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 162(909), 175–203 (1937)CrossRefGoogle Scholar
  8. 8.
    Kitagawa, N., Brook, M., Workman, E.J.: Continuing currents in cloud-to-ground lightning discharges. J. Geophys. Res. 67(2), 637–647 (1962)CrossRefGoogle Scholar
  9. 9.
    Wang, D., Takagi, N., Watanabe, T., Sakurano, H., Hashimoto, M.: Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower. Geophys. Res. Lett. 35, L02803 (2008).  https://doi.org/10.1029/2007gl032136
  10. 10.
    Wang, D., Takagi, N.: Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan. IEEJ Trans. Power Energy 132(6), 568–572 (2012).  https://doi.org/10.1541/ieejpes.132.568CrossRefGoogle Scholar
  11. 11.
    Miki, M., Rakov, V.A., Shindo, T., Diendorfer, G., Mair, M., Heidler, F., Zischank, W., Uman, M.A., Thottappillil, R., Wang, D.: Initial stage in lightning from tall objects and in rocket-triggered lightning. J. Geophys. Res. 110(D2) (2005)Google Scholar
  12. 12.
    Miki, M., Miki, T., Wada, A., Asakawa, A., Asuka, Y., Honjo, N.: Observations of lightning flashes to wind turbines. In: 30th International Conference on Lightning Protection ICLP, Cagliari, Italy (2010)Google Scholar
  13. 13.
    Heidler, F., Manhardt, M., Stimper, K.: The slow-varying electric field of negative upward lightning initiated by the Peissenberg Tower, Germany. IEEE Trans. EMC 55(2), 353–361 (2013)Google Scholar
  14. 14.
    Heidler, F., Manhardt, M., Stimper, K.: Characteristics of upward positive lightning initiated from the Peissenberg Tower, Germany. IEEE Trans. EMC 57(1), 102–111 (2015)Google Scholar
  15. 15.
    Romero, C., Paolone, M., Rubinstein, M., Rachidi, F., Pavello, D., Giri, D.: A statistical analysis on the risetime of lightning current pulses in negative upward flashes measured at the Saentis tower. In: Proceedings of the 31st Conference on Lightning Protection (ICLP), Vienna, Austria, paper 114, September 2012Google Scholar
  16. 16.
    Flache, D., Rakov, V.A., Heidler, F., Zischank, W., Thottappillil, R.: Initial-stage pulses in upward lightning: leader/return stroke versus M-component mode of charge transfer to ground. Geophys. Res. Lett. 35, L13812 (2008).  https://doi.org/10.1029/2008gl034148
  17. 17.
    Wang, D., Rakov, V.A., Uman, M.A., Fernandez, M.J., Rambo, K.J., Schnetzer, G.H., Fisher, R.J.: Characterization of the initial stage of negative rocket-triggered lightning. J. Geophys. Res. 104(D4), 4213–4222 (1999)CrossRefGoogle Scholar
  18. 18.
    Heidler, F.H., Paul, C.: Some return stroke characteristics of negative lightning flashes recorded at the Peissenberg Tower. IEEE Trans. EMC 59(5), 1490–1497 (2017).  https://doi.org/10.1109/temc.2017.2688587CrossRefGoogle Scholar
  19. 19.
    Rubenstein, M., Rachidi, F., Uman, M.A., Thottappillil, R., Rakov, V.A., Nucci, C.A.: Characterization of vertical electric fields 500 m and 30 m from triggered lightning. J. Geophys. Res. 100(D5), 8863–8872 (1995)CrossRefGoogle Scholar
  20. 20.
    Rakov, V.A., Kodali, V., Crawford, D.E., Schoene, J., Uman, M.A., Rambo, K.J., Schnetzer, G.H.: Close electric field signatures of dart leader/return stroke sequences in rocket-triggered lightning showing fields. J. Geophys. Res. 110(D07205) (2005).  https://doi.org/10.1029/2004jd005417
  21. 21.
    Mosaddeghi, A., Shoory, A., Rachidi, F., Diendorfer, G., Pichler, H., Pavanello, D., Rubinstein, M., Zweiacker, P., Nyffeler, M.: Lightning electromagnetic fields at very close distances associated with lightning strikes to the Gaisberg tower. J. Geophys. Res. 115(D17101) (2010).  https://doi.org/10.1029/2009jd013754
  22. 22.
    Cummins, K.L., Murphy, M.J., Bardo, E.A., Pifer, A.E.: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Atmos. 103(D8), 9035–9044 (1998).  https://doi.org/10.1029/98jd00153CrossRefGoogle Scholar
  23. 23.
    Cummins, K.L., Krider, E.P., Malone, M.D.: The U.S. National Lightning Detection Network and applications of cloud-to-ground lightning by electric power utilities. IEEE Trans. on EMC 40(4), 465–480 (1998).  https://doi.org/10.1109/15.736207CrossRefGoogle Scholar
  24. 24.
    Cummins, K.L., Burnett, R.O., Hiscox, W.L., Pifer, A.E.: Line reliability and fault analysis using the National Lightning Detection Network. In: Precise Measurements in Power Conference, Arlington, VA, USA (1993)Google Scholar
  25. 25.
    Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Diendorfer, G., Pichler, H., Schulz, W., Pavanello, D., Romero, C.: Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower. J. Geophys. Res. Atmos. 121, 595–606 (2016)CrossRefGoogle Scholar
  26. 26.
    Diendorfer, G., Pichler, H., Schulz, W.: LLS detection of upward initiated lightning flashes. In: Asia-Pacific International Conference on Lightning (APL), Nagoya (2015)Google Scholar
  27. 27.
    Baba, Y., Rakov, V.A.: Lightning electromagnetic environment in the presence of a tall grounded strike object. J. Geophys. Res. 110(D9) (2005).  https://doi.org/10.1029/2004jd005505
  28. 28.
    Bermudez, J.L., Rachidi, F., Rubinstein, M., Janischewski, W., Shostac, V., Pavanello, D., Chang, J.S., Hussein, A.M., Nucci, C.A., Paolone, M.: Far field-current relationship for lightning return strokes to elevated strike objects. IEEE Trans. EMC 47(1), 146–159 (2005)Google Scholar
  29. 29.
    Rachidi, F., Janischewsky, W., Hussein, A.M., Nucci, C.A., Guerrieri, S., Kordi, B., Chang, J.S.: Current and electromagnetic field associated with lightning-return strokes to tall towers. IEEE Trans. EMC 43(3), 356–367 (2001)Google Scholar
  30. 30.
    Heidler, F., Schulz, W.: Lightning current measurements compared to data from the lightning location system BLIDS. In: CIGRE International Colloquium on Lightning and Power Systems, Bologna, Italy (2016)Google Scholar
  31. 31.
    Cooray, V.: On the upper and lower limit of peak current in first return strokes of lightning flashes. In: Proceedings 30th International Conference on Lightning Protection (ICLP), paper 1291, Cagliari, Italy, September 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of the Federal Armed Forces Munich, Chair for High Voltage Technology and Lightning Research (EIT 7.1)NeubibergGermany
  2. 2.OVE Service GmbH, ALDISViennaAustria

Personalised recommendations