Current and Electric Field Characteristics of 35 Return Strokes from Negative Lightning Measured at Peissenberg Tower Germany
Abstract
In this paper, we analyse the currents and electric fields of 35 negative return strokes, which have been measured since 2012 at Peissenberg Tower, Germany. 27 were pure return strokes and 8 were return strokes with superimposed symmetrical M-components. 2 out of this 8 were first return strokes. The measured peak currents ranged from 3.1 kA to 40.8 kA, the arithmetic mean value (AM) was 12.3 kA. Further we estimated the 10%-to-90% rise time, which ranged from 1.0 µs to 7.4 µs, the AM was 1.9 µs. The transferred charge varied from 0.1 C to 10.6 C, the AM was 1.0 C. The radiated electric field was measured in a distance of about 180 m to the tower. The electric field exhibits a first field change due to the descending leader. For the description of this first field change we introduced ∆E1. The values of ∆E1 varied from 0.8 kV/m to 10 kV/m, the AM was 2.8 kV/m. The first field change is immediately followed by a second field change of opposite polarity. We introduced ∆E2 to describe this field change, which is caused by the return stroke process. The values of ∆E2 varied from 1 kV/m to 14.2 kV/m, the AM was 3.5 kV/m. All analysed return strokes were detected by the lightning location system (LLS) EUCLID. The peak current inferred by EUCLID varied between 3.9 kA and 53.0 kA, the AM was 15.0 kA. 10 out of 35 detected return strokes were misclassified as cloud-to-cloud discharge.
Keywords
Lightning Return stroke Electric field Peissenberg tower Lightning location (LLS) EUCLIDNotes
Acknowledgement
We thank EUCLID for providing the LLS data for this study.
References
- 1.Berger, K.: Novel observations on lightning discharges: results of research on Mount San Salvatore. J. Franklin Inst. 283(6), 478–525 (1967)CrossRefGoogle Scholar
- 2.Rakov, V.A., Uman, M.A.: Lightning: Physics and Effects. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
- 3.Shindo, T., Uman, M.A.: Continuing current in negative cloud-to-ground lightning. J. Geophys. Res. 94(D4), 5189–5198 (1989)CrossRefGoogle Scholar
- 4.Rakov, V.A., Uman, M.A.: Long continuing current in negative lightning ground flashes. J. Geophys. Res. 95(D5), 5455–5470 (1990)CrossRefGoogle Scholar
- 5.Cooray, V.: Lightning electromagnetics. The Institution of Engineering and Technology, London (2012)CrossRefGoogle Scholar
- 6.Paul, C., Heidler, F.H.: Properties of three types of M-components and ICC-pulses from currents of negative upward lightning measured at the Peissenberg Tower. IEEE Trans. EMC 59(60), 1825–1832 (2018). https://doi.org/10.1109/temc.2018.2802720CrossRefGoogle Scholar
- 7.Malan, D.J., Collens, H.: Progressive lightning III - the fine structure of return lightning stroke. Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 162(909), 175–203 (1937)CrossRefGoogle Scholar
- 8.Kitagawa, N., Brook, M., Workman, E.J.: Continuing currents in cloud-to-ground lightning discharges. J. Geophys. Res. 67(2), 637–647 (1962)CrossRefGoogle Scholar
- 9.Wang, D., Takagi, N., Watanabe, T., Sakurano, H., Hashimoto, M.: Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower. Geophys. Res. Lett. 35, L02803 (2008). https://doi.org/10.1029/2007gl032136
- 10.Wang, D., Takagi, N.: Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan. IEEJ Trans. Power Energy 132(6), 568–572 (2012). https://doi.org/10.1541/ieejpes.132.568CrossRefGoogle Scholar
- 11.Miki, M., Rakov, V.A., Shindo, T., Diendorfer, G., Mair, M., Heidler, F., Zischank, W., Uman, M.A., Thottappillil, R., Wang, D.: Initial stage in lightning from tall objects and in rocket-triggered lightning. J. Geophys. Res. 110(D2) (2005)Google Scholar
- 12.Miki, M., Miki, T., Wada, A., Asakawa, A., Asuka, Y., Honjo, N.: Observations of lightning flashes to wind turbines. In: 30th International Conference on Lightning Protection ICLP, Cagliari, Italy (2010)Google Scholar
- 13.Heidler, F., Manhardt, M., Stimper, K.: The slow-varying electric field of negative upward lightning initiated by the Peissenberg Tower, Germany. IEEE Trans. EMC 55(2), 353–361 (2013)Google Scholar
- 14.Heidler, F., Manhardt, M., Stimper, K.: Characteristics of upward positive lightning initiated from the Peissenberg Tower, Germany. IEEE Trans. EMC 57(1), 102–111 (2015)Google Scholar
- 15.Romero, C., Paolone, M., Rubinstein, M., Rachidi, F., Pavello, D., Giri, D.: A statistical analysis on the risetime of lightning current pulses in negative upward flashes measured at the Saentis tower. In: Proceedings of the 31st Conference on Lightning Protection (ICLP), Vienna, Austria, paper 114, September 2012Google Scholar
- 16.Flache, D., Rakov, V.A., Heidler, F., Zischank, W., Thottappillil, R.: Initial-stage pulses in upward lightning: leader/return stroke versus M-component mode of charge transfer to ground. Geophys. Res. Lett. 35, L13812 (2008). https://doi.org/10.1029/2008gl034148
- 17.Wang, D., Rakov, V.A., Uman, M.A., Fernandez, M.J., Rambo, K.J., Schnetzer, G.H., Fisher, R.J.: Characterization of the initial stage of negative rocket-triggered lightning. J. Geophys. Res. 104(D4), 4213–4222 (1999)CrossRefGoogle Scholar
- 18.Heidler, F.H., Paul, C.: Some return stroke characteristics of negative lightning flashes recorded at the Peissenberg Tower. IEEE Trans. EMC 59(5), 1490–1497 (2017). https://doi.org/10.1109/temc.2017.2688587CrossRefGoogle Scholar
- 19.Rubenstein, M., Rachidi, F., Uman, M.A., Thottappillil, R., Rakov, V.A., Nucci, C.A.: Characterization of vertical electric fields 500 m and 30 m from triggered lightning. J. Geophys. Res. 100(D5), 8863–8872 (1995)CrossRefGoogle Scholar
- 20.Rakov, V.A., Kodali, V., Crawford, D.E., Schoene, J., Uman, M.A., Rambo, K.J., Schnetzer, G.H.: Close electric field signatures of dart leader/return stroke sequences in rocket-triggered lightning showing fields. J. Geophys. Res. 110(D07205) (2005). https://doi.org/10.1029/2004jd005417
- 21.Mosaddeghi, A., Shoory, A., Rachidi, F., Diendorfer, G., Pichler, H., Pavanello, D., Rubinstein, M., Zweiacker, P., Nyffeler, M.: Lightning electromagnetic fields at very close distances associated with lightning strikes to the Gaisberg tower. J. Geophys. Res. 115(D17101) (2010). https://doi.org/10.1029/2009jd013754
- 22.Cummins, K.L., Murphy, M.J., Bardo, E.A., Pifer, A.E.: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Atmos. 103(D8), 9035–9044 (1998). https://doi.org/10.1029/98jd00153CrossRefGoogle Scholar
- 23.Cummins, K.L., Krider, E.P., Malone, M.D.: The U.S. National Lightning Detection Network and applications of cloud-to-ground lightning by electric power utilities. IEEE Trans. on EMC 40(4), 465–480 (1998). https://doi.org/10.1109/15.736207CrossRefGoogle Scholar
- 24.Cummins, K.L., Burnett, R.O., Hiscox, W.L., Pifer, A.E.: Line reliability and fault analysis using the National Lightning Detection Network. In: Precise Measurements in Power Conference, Arlington, VA, USA (1993)Google Scholar
- 25.Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Diendorfer, G., Pichler, H., Schulz, W., Pavanello, D., Romero, C.: Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower. J. Geophys. Res. Atmos. 121, 595–606 (2016)CrossRefGoogle Scholar
- 26.Diendorfer, G., Pichler, H., Schulz, W.: LLS detection of upward initiated lightning flashes. In: Asia-Pacific International Conference on Lightning (APL), Nagoya (2015)Google Scholar
- 27.Baba, Y., Rakov, V.A.: Lightning electromagnetic environment in the presence of a tall grounded strike object. J. Geophys. Res. 110(D9) (2005). https://doi.org/10.1029/2004jd005505
- 28.Bermudez, J.L., Rachidi, F., Rubinstein, M., Janischewski, W., Shostac, V., Pavanello, D., Chang, J.S., Hussein, A.M., Nucci, C.A., Paolone, M.: Far field-current relationship for lightning return strokes to elevated strike objects. IEEE Trans. EMC 47(1), 146–159 (2005)Google Scholar
- 29.Rachidi, F., Janischewsky, W., Hussein, A.M., Nucci, C.A., Guerrieri, S., Kordi, B., Chang, J.S.: Current and electromagnetic field associated with lightning-return strokes to tall towers. IEEE Trans. EMC 43(3), 356–367 (2001)Google Scholar
- 30.Heidler, F., Schulz, W.: Lightning current measurements compared to data from the lightning location system BLIDS. In: CIGRE International Colloquium on Lightning and Power Systems, Bologna, Italy (2016)Google Scholar
- 31.Cooray, V.: On the upper and lower limit of peak current in first return strokes of lightning flashes. In: Proceedings 30th International Conference on Lightning Protection (ICLP), paper 1291, Cagliari, Italy, September 2010Google Scholar