Advertisement

The Mucosal Immune System: An Outlook for Nanovaccines Development

  • Sergio Rosales-Mendoza
  • Omar González-Ortega
Chapter

Abstract

In mammals, the mucosal immune system is a complex network of cells, tissues, and soluble molecules that orchestrate the defense against pathogens or malignant cells; this immune system substantially differs from the one acting at the central level. Nanovaccines have emerged as a promising approach for the development of innovative vaccines, having enhanced immunogenicity and avoiding the use of attenuated/inactivated pathogens. This chapter transmits the essential knowledge on the mucosal immune system required to understand the design and evaluation of nanovaccines, with special emphasis in the function of the nose-associated lymphoid tissue (NALT) and the gut-associated lymphoid tissue (GALT) since the nasal and oral routes are the most explored in nanovaccine development. Antigens administered by mucosal routes are essentially sampled by M-cells, epithelial cells, and dendritic cells; once the antigen reaches the submucosa antigen presenting cells (APCs) it establishes an immune synapse with lymphocytes, which triggers their differentiation and expansion in the lymph nodes. Among the lymphocytes subsets involved in the adaptive immunity, T helper cells are key since they support the response of T and B lymphocytes by producing Th1 and Th2 cytokine profiles, respectively, acquire a Th17 phenotype that contributes to IgA responses, or can rather have suppressive roles by acquiring the regulatory T-cell phenotype (Treg) that is of relevance in therapies against autoimmune or inflammatory conditions. In contrast, T cytotoxic lymphocytes are specialized in killing virus-infected or malignant cells, whereas B mucosal lymphocytes are specialized in antibody production (mainly secretory IgA), which is a key effector mechanism to protect against infectious agents in the mucosa. The use of adjuvants is critical to trigger the desired immune response when mucosal routes are used. Although GALT and NALT share most of the cell types, they differ in the organization and induced immune responses in different mucosal compartments. For instance, intranasal immunization efficiently induces humoral responses in the airways and genital organs, whereas oral immunization induces mainly systemic and intestinal humoral responses, which is explained by the traffic of lymphocytes controlled by homing molecules. The knowledge regarding function and structure of NALT is still limited with respect to GALT. The current knowledge on the mucosal immune system has aided in the development of several nanovaccine candidates and opportunities for designing optimal nanovaccines will be expanded as long as the knowledge on this complex immune system increases in the following years.

Keywords

Oral immunization Nasal immunization Antigen uptake M-cell Peyer’s patch NALT GALT Oral tolerance Common mucosal immune system 

References

  1. Abusleme L, Moutsopoulos NM (2017) IL-17: overview and role in oral immunity and microbiome. Oral Dis 23(7):854–865CrossRefGoogle Scholar
  2. Ahluwalia B, Magnusson MK, Öhman L (2017) Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 52(11):1185–1193CrossRefGoogle Scholar
  3. Aliberti J (2016) Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediat Inflamm 2016:3104727CrossRefGoogle Scholar
  4. Angus KL, Griffiths GM (2013) Cell polarisation and the immunological synapse. Curr Opin Cell Biol 25:85–91CrossRefGoogle Scholar
  5. Banerjee S, Medina-Fatimi A, Nichols R, Tendler D, Michetti M, Simon J, Kelly CP, Monath TP, Michetti P (2002) Safety and efficacy of low dose Escherichia coli enterotoxin adjuvant for urease based oral immunisation against helicobacter pylori in healthy volunteers. Gut 51:634–640CrossRefGoogle Scholar
  6. Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target cells after synapse formation. Nature 411:489–494CrossRefGoogle Scholar
  7. Berin MC, Shreffler WG (2016) Mechanisms underlying induction of tolerance to foods. Immunol Allergy Clin N Am 36(1):87–102CrossRefGoogle Scholar
  8. Boyaka PN, Ohmura M, Fujihashi K, Koga T, Yamamoto M, Kweon MN, Takeda Y, Jackson RJ, Kiyono H, Yuki Y, McGhee JR (2003) Chimeras of labile toxin one and cholera toxin retain mucosal adjuvanticity and direct Th cell subsets via their B subunit. J Immunol 170:454–462CrossRefGoogle Scholar
  9. Bradney CP, Sempowski GD, Liao HX, Haynes BF, Staats HF (2002) Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J Virol 76(2):517–524CrossRefGoogle Scholar
  10. Brandtzaeg P, Kiyono H, Pabst R, Russel MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1:31–37CrossRefGoogle Scholar
  11. Buettner M, Bode U (2012) Lymph node dissection-understanding the immunological function of lymph nodes. Clin Exp Immunol 169:205–212CrossRefGoogle Scholar
  12. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518CrossRefGoogle Scholar
  13. Carol M, Lambrechts A, Van Gossum A, Libin M, Goldman M, Mascart-Lemone F (1998) Spontaneous secretion of interferon gamma and interleukin 4 by human intraepithelial and lamina propria gut lymphocytes. Gut 42:643–649CrossRefGoogle Scholar
  14. Cha HR, Ko HJ, Kim ED, Chang SY, Seo SU, Cuburu N, Ryu S, Kim S, Kweon MN (2011) Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA plasma cells following mucosal vaccination via estrogen control. J Immunol 187:3044–3052CrossRefGoogle Scholar
  15. Cheng E, Cárdenas-Freytag L, Clements JD (1999) The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 18:38–49CrossRefGoogle Scholar
  16. Clements JD, Norton EB (2018) The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 3(4):pii: e00215-18CrossRefGoogle Scholar
  17. Clements JD, Hartzog NM, Lyon FL (1988) Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 6:269–277CrossRefGoogle Scholar
  18. Czerkinsky C, Holmgren J (2012) Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol 354:1–18Google Scholar
  19. Daniell H, Rai V, Xiao Y (2018) Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplast confers protection against all three poliovirus serotypes. Plant Biotechnol J 17(7):1357–1368.  https://doi.org/10.1111/pbi.13060CrossRefGoogle Scholar
  20. Date Y, Ebisawa M, Fukuda S, Shima H, Obata Y, Takahashi D, Kato T, Hanazato M, Nakato G, Williams IR, Hase K, Ohno H (2017) NALT M cells are important for immune induction for the common mucosal immune system. Int Immunol 29(10):471–478CrossRefGoogle Scholar
  21. Davitt CJ, McNeela EA, Longet S, Tobias J, Aversa V, McEntee CP, Rosa M, Coulter IS, Holmgren J, Lavelle EC (2016) A novel adjuvanted capsule based strategy for oral vaccination against infectious diarrhoeal pathogens. J Control Release 233:162–173CrossRefGoogle Scholar
  22. del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Forster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234:268–281CrossRefGoogle Scholar
  23. Dickinson BL, Clements JD (1995) Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63:1617–1623Google Scholar
  24. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348CrossRefGoogle Scholar
  25. Duverger A, Jackson RJ, van Ginkel FW, Fischer R, Tafaro A, Leppla SH, Fujihashi K, Kiyono H, McGhee JR, Boyaka PN (2006) Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J Immunol 176:1776–1783CrossRefGoogle Scholar
  26. Elson CO, Ealding W (1984a) Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 133:2892–2897Google Scholar
  27. Elson CO, Ealding W (1984b) Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741Google Scholar
  28. Feldstein LR, Mariat S, Gacic-Dobo M, Diallo MS, Conklin LM, Wallace AS (2017) Global routine vaccination coverage, 2016. MMWR Morb Mortal Wkly Rep 66(45):1252–1255CrossRefGoogle Scholar
  29. Fougeron D, Van Maele L, Songhet P, Cayet D, Hot D, Van Rooijen N, Mollenkopf HJ, Hardt WD, Benecke AG, Sirard JC (2015) Indirect toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract. Vaccine 33:3331–3341CrossRefGoogle Scholar
  30. Freytag LC, Clements JD (2005) Mucosal adjuvants. Vaccine 23:1804–1813CrossRefGoogle Scholar
  31. Fukuiwa T, Sekine S, Kobayashi R, Suzuki H, Kataoka K, Gilbert RS, Kurono Y, Boyaka PN, Krieg AM, McGhee JR, Fujihashi K (2008) A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26:4849–4859CrossRefGoogle Scholar
  32. Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Hollingshead SK, Briles DE, Fujihashi K (2011) A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. J Immunol 186(4):2454–2461CrossRefGoogle Scholar
  33. Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL (2001) Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 166:3451–3457CrossRefGoogle Scholar
  34. Gommerman JL, Rojas OL, Fritz JH (2014) Re-thinking the functions of IgA(+) plasma cells. Gut Microbes 5(5):652–662CrossRefGoogle Scholar
  35. Goodman WA, Pizarro TT (2013) Regulatory cell populations in the intestinal mucosa. Curr Opin Gastroenterol 29:614–620CrossRefGoogle Scholar
  36. Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S (2019) An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 20:1–13Google Scholar
  37. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Müller W, Sparwasser T, Förster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246CrossRefGoogle Scholar
  38. Hagiwara Y, Kawamura YI, Kataoka K, Rahima B, Jackson RJ, Komase K, Dohi T, Boyaka PN, Takeda Y, Kiyono H, McGhee JR, Fujihashi K (2006) A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J Immunol 177:3045–3054CrossRefGoogle Scholar
  39. Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH (2017) Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 49(9):e373CrossRefGoogle Scholar
  40. Halle S, Halle O, Förster R (2017) Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol 38(6):432–443CrossRefGoogle Scholar
  41. Holmgren J, Lycke N (2013) Principles of mucosal vaccine strategies. In: Smith PD, Mac Donald TT, Blumberg RS (eds) Principles of mucosal immunology. Garland Science, London, pp 413–428Google Scholar
  42. Iho S, Maeyama J, Suzuki F (2005) CpG oligodeoxynucleotides as mucosal adjuvants. Hum Vaccin Immunother 11(3):755–760CrossRefGoogle Scholar
  43. Illum L (2006) Nasal clearance in health and disease. J Aerosol Med 19:92–99CrossRefGoogle Scholar
  44. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792CrossRefGoogle Scholar
  45. Jahnsen FL, Gran E, Haye R, Brandtzaeg P (2004) Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am J Respir Cell Mol Biol 30:31–37CrossRefGoogle Scholar
  46. Johansson-Lindbom B, Agace WW (2007) Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 215:226–242CrossRefGoogle Scholar
  47. Kayama H, Takeda K (2016) Functions of innate immune cells and commensal bacteria in gut homeostasis. J Biochem 159(2):141–149CrossRefGoogle Scholar
  48. Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S, Mori Y, Kunisawa J, Kiyono H, Itoh N, Nagano K, Kamada H, Tsutsumi Y, Tsunoda S (2010) Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J Virol 84(24):12703–12712CrossRefGoogle Scholar
  49. Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2:403–411CrossRefGoogle Scholar
  50. Khan T, Heffron CL, High KP, Roberts PC (2014) Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines. Virol J 11:78CrossRefGoogle Scholar
  51. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330CrossRefGoogle Scholar
  52. Kim DY, Sato A, Fukuyama S, Sagara H, Nagatake T, Kong IG, Goda K, Nochi T, Kunisawa J, Sato S, Yokota Y, Lee CH, Kiyono H (2011) The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J Immunol 186:4253–4262CrossRefGoogle Scholar
  53. Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nature Rev Immunol 3:822–829CrossRefGoogle Scholar
  54. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, Butcher EC (2003) CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 111(7):1001–1010CrossRefGoogle Scholar
  55. Lamichhane A, Azegamia T, Kiyonoa H (2014) The mucosal immune system for vaccine development. Vaccine 32(49):6711–6723CrossRefGoogle Scholar
  56. Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC (2003) A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 170(7):3799–3805CrossRefGoogle Scholar
  57. Lee H, Ruane D, Law K, Ho Y, Garg A, Rahman A, Esterházy D, Cheong C, Goljo E, Sikora AG, Mucida D, Chen BK, Govindraj S, Breton G, Mehandru S (2015) Phenotype and function of nasal dendritic cells. Mucosal Immunol 8(5):1083–1098CrossRefGoogle Scholar
  58. Lin Y, Slight SR, Khader SA (2010) Th17 cytokines and vaccine-induced immunity. Semin Immunopathol 32:79–90CrossRefGoogle Scholar
  59. Mann ER, Landy JD, Bernardo D, Peake ST, Hart AL, Al-Hassi HO, Knight SC (2013) Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol Lett 150:30–40CrossRefGoogle Scholar
  60. Mason KL, Huffnagle GB, Noverr MC, Kao JY (2008) Overview of gut immunology. Adv Exp Med Biol 635:1–14CrossRefGoogle Scholar
  61. McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF (2009) The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 27:3544–3552CrossRefGoogle Scholar
  62. McLachlan JB, Shelburne CP, Hart JP, Pizzo SV, Goyal R, Brooking-Dixon R, Staats HF, Abraham SN (2008) Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 14:536–541CrossRefGoogle Scholar
  63. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826CrossRefGoogle Scholar
  64. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300CrossRefGoogle Scholar
  65. Mestecky J, Blumberg R, Kiyono H, McGhee JR (2003) Chapter 31. In: Paul WE (ed) Fundamental immunology, 5th edn. Academic, San Diego, pp 965–1020Google Scholar
  66. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357Google Scholar
  67. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685CrossRefGoogle Scholar
  68. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350:896–903CrossRefGoogle Scholar
  69. Newberry RD (2008) Intestinal lymphoid tissues: is variety an asset or a liability? Curr Opin Gastroenterol 24(2):121–128CrossRefGoogle Scholar
  70. Newsted D, Fallahi F, Golshani A, Azizi A (2015) Advances and challenges in mucosal adjuvant technology. Vaccine 33:2399–2405CrossRefGoogle Scholar
  71. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258CrossRefGoogle Scholar
  72. Ohno H (2016) Intestinal M cells J Biochem 159(2):151–160Google Scholar
  73. Okada E, Sasaki S, Ishii N, Aoki I, Yasuda T, Nishioka K, Fukushima J, Miyazaki J, Wahren B, Okuda K (1997) Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J Immunol 159(7):3638–3647Google Scholar
  74. Őrfi E, Szebeni J (2016) The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev 106(Pt B):402–409CrossRefGoogle Scholar
  75. Pabst R (2015) Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine 33(36):4406–4413CrossRefGoogle Scholar
  76. Patel A, Patel M, Yang X, Mitra A (2014) Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Peptide Lett 21(11):1102–1120CrossRefGoogle Scholar
  77. Pelka K, De Nardo D (2018) Emerging concepts in innate immunity. Methods Mol Biol 1714:1–18CrossRefGoogle Scholar
  78. Peterson RA (2012) Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 40(2):186–204CrossRefGoogle Scholar
  79. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153CrossRefGoogle Scholar
  80. Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36(41):6070–6076CrossRefGoogle Scholar
  81. Prakken BJ, van der Zee R, Anderton SM, van Kooten PJ, Kuis W, van Eden W (1997) Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc Natl Acad Sci U S A 94:3284–3289CrossRefGoogle Scholar
  82. Reboldi A, Cyster JG (2016) Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev 271(1):230–245CrossRefGoogle Scholar
  83. Rharbaoui F, Bruder D, Vidakovic M, Ebensen T, Buer J, Guzman CA (2005) Characterization of a B220+ lymphoid cell subpopulation with immune modulatory functions in nasal-associated lymphoid tissues. J Immunol 174:1317–1324CrossRefGoogle Scholar
  84. Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18(6):263–266CrossRefGoogle Scholar
  85. Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi JH, Studt N, Mayer L, Lavelle EC, Steinman RM, Mucida D, Mehandru S (2013) Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med 210:1871–1888CrossRefGoogle Scholar
  86. Rudensky AY, Campbell DY (2006) In vivo sites and cellular mechanisms of T reg cell–mediated suppression. J Exp Med 203:489–492CrossRefGoogle Scholar
  87. Schiavi E, Smolinska S, O’Mahony L (2015) Intestinal dendritic cells. Curr Opin Gastroenterol 31(2):98–103CrossRefGoogle Scholar
  88. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114CrossRefGoogle Scholar
  89. Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419CrossRefGoogle Scholar
  90. Semmrich M, Plantinga M, Svensson-Frej M, Uronen-Hansson H, Gustafsson T, Mowat AM, Yrlid U, Lambrecht BN, Agace WW (2011) Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunol 5:150–160CrossRefGoogle Scholar
  91. Siewert C, Menning A, Dudda J, Siegmund K, Lauer U, Floess S, Campbell DJ, Hamann A, Huehn J (2007) Induction of organ-selective CD4+ regulatory T cell homing. Eur J Immunol 37:978–989CrossRefGoogle Scholar
  92. Soloff AC, Barratt-Boyes SM (2010) Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res 20:872–885CrossRefGoogle Scholar
  93. Spit BJ, Hendricksen EG, Bruijntjes JP, Kuper CF (1989) Nasal lymphoid tissue in the rat. Cell Tissue Res 255:193–198CrossRefGoogle Scholar
  94. Théry C, Amigorena S (2001) The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 13(1):45–51CrossRefGoogle Scholar
  95. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5. Nat Immunol 9:769–776CrossRefGoogle Scholar
  96. Van Maele L, Fougeron D, Janot L, Didierlaurent A, Cayet D, Tabareau J, Rumbo M, Corvo-Chamaillard S, Boulenouar S, Jeffs S, Vande Walle L, Lamkanfi M, Lemoine Y, Erard F, Hot D, Hussell T, Ryffel B, Benecke AG, Sirard JC (2014) Airway structural cells regulate TLR5-mediated mucosal adjuvant activity. Mucosal Immunol 7:489–500CrossRefGoogle Scholar
  97. Wang X, Sherman A, Liao G, Leong KW, Daniell H, Terhorst C, Herzog RW (2013) Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 65:759–773CrossRefGoogle Scholar
  98. Wang M, Gao Z, Zhang Z, Pan L, Zhang Y (2014) Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 10(12):3544–3551CrossRefGoogle Scholar
  99. Wershil BK, Furuta GT (2008) Gastrointestinal mucosal immunity. J Allergy Clin Immunol 121:S380–S383CrossRefGoogle Scholar
  100. Youn HJ, Ko SY, Lee KA, Ko HJ, Lee YS, Fujihashi K, Boyaka PN, Kim SH, Horimoto T, Kweon MN, Kang CY (2007) A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25:5189–5198CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations