Advertisement

Nanovaccines pp 319-336 | Cite as

Perspectives for the Field of Nanovaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega
Chapter

Abstract

Nanomaterials can be used as antigen delivery vehicles with immunostimulatory activity, leading to an improved immune response, which is of relevance in the development of new vaccines termed nanovaccines. These are a promise of modern vaccinology to address some of the challenges in the field that include safety and efficacy enhancement and costs reduction. The previous chapters of this book were focused on individual nanomaterials applied to mucosal vaccine development (namely gold, PLGA, silica, and chitosan nanoparticles; nanotubes, nanogels, liposomes, and virus-like particles). In this chapter, the remaining challenges and possible breakthroughs for this field are identified and discussed. Thus far, the most advanced nanovaccines are those based on VLPs, nanogels, liposomes, and PLGA nanoparticles, being the former approach the one resulting in human and animal vaccines available in the market. Some clinical trials have supported the safety and efficacy of other nanovaccines, such as those based on nanogels and liposomes. Overall, it is required to expand clinical trials and the development of mucosal formulations, as well as to assess novel vaccine designs, such as those comprising biosynthesized nanomaterials or targeting specific cells, and optimize nanomaterials properties to avoid the use of accessory adjuvants. Controversies on toxicity, regulatory issues, and the difficulties to progress into clinical trials and commercialization are discussed. Indeed, we might have effective, safe, convenient, and cheap vaccines through nanotechnology in the near future.

Keywords

Toxicity Clinical trial ‘Valley of death’ Green synthesis Biosynthesis VLPs Multifunctional nanoparticles 

References

  1. Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET, Boyd M, Kirilova M, Li Z, Ng'ang'a D, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Agarwal A, Brinkman AL, Cabral C, Chandrashekar A, Giglio PB, Jetton D, Jimenez J, Lee BC, Mojta S, Molloy K, Shetty M, Neubauer GH, Stephenson KE, Peron JP, Zanotto PM, Misamore J, Finneyfrock B, Lewis MG, Alter G, Modjarrad K, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353(6304):1129–1132CrossRefGoogle Scholar
  2. Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42(1-3):219–232CrossRefGoogle Scholar
  3. Agarwal H, Nakara A, Shanmugam VK (2019) Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother 109:2561–2572CrossRefGoogle Scholar
  4. Ahmed S, Annu, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284CrossRefGoogle Scholar
  5. Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA (2019) A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes a potent T cell. Autoantigen Cell 177(6):1583–1599CrossRefGoogle Scholar
  6. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068CrossRefGoogle Scholar
  7. Alidori S, Thorek DLJ, Beattie BJ, Ulmert D, Almeida BA, Monette S, Scheinberg DA, McDevitt MR (2017) Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 12(8):e0183902CrossRefGoogle Scholar
  8. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333CrossRefGoogle Scholar
  9. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity: miniperspective. J Med Chem 59(18):8149–8167CrossRefGoogle Scholar
  10. Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M (2012) Functional nanogels for biomedical applications. Curr Med Chem 19(29):5029–5043CrossRefGoogle Scholar
  11. Baek JO, Seo JW, Kwon O, Park SM, Kim CH, Kim IH (2012) Production of human papillomavirus type 33 L1 major capsid protein and virus-like particles from Bacillus subtilis to develop a prophylactic vaccine against cervical cancer. Enzym Microb Technol 50(3):173–180CrossRefGoogle Scholar
  12. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–IN27CrossRefGoogle Scholar
  13. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605CrossRefGoogle Scholar
  14. Bosch S, Botha TL, Jordaan A, Maboeta M, Wepener V (2018) Sublethal effects of ionic and nanogold on the nematode Caenorhabditis elegans. J Toxicol 2018:6218193CrossRefGoogle Scholar
  15. Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRefGoogle Scholar
  16. CDC (1987) Centers for disease control - recommendations of the immunization practices advisory committee update on Hepatitis B prevention. MMWR 36(23):353–336Google Scholar
  17. Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6(3):381–390CrossRefGoogle Scholar
  18. Chen X, Li R, Wong SHD, Wei K, Cui M, Chen H, Jiang Y, Yang B, Zhao P, Xu J, Chen H, Yin C, Lin S, Lee WY, Jing Y, Li Z, Yang Z, Xia J, Chen G, Li G, Bian L (2019) Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat Commun 10(1):2705CrossRefGoogle Scholar
  19. Cho KJ, Shin HJ, Lee JH, Kim KJ, Park SS, Lee Y (2009) The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake. J Mol Biol 390:83–98CrossRefGoogle Scholar
  20. Choi YS, Lee MY, David AE, Park YS (2014) Nanoparticles for gene delivery: therapeutic and toxic effects. Mol Cell Toxicol 10(1):1–8CrossRefGoogle Scholar
  21. Clarke JL, Waheed MT, Lössl AG, Martinussen I, Daniell H (2013) How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol Biol 83(1-2):33–40CrossRefGoogle Scholar
  22. Coller BS, Califf RM (2009) Traversing the valley of death: a guide to assessing prospects for translational success. Sci Transl Med 1(10):10cm9CrossRefGoogle Scholar
  23. Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP (2008) Medicine: life cycle of translational research for medical interventions. Science 321:1298–1299CrossRefGoogle Scholar
  24. Daniell H, Streatfield SJ, Rybicki EP (2015) Advances in molecular farming: key technologies, scaled up production and lead targets. Plant Biotechnol J 13(8):1011–1012CrossRefGoogle Scholar
  25. Deng L, Chang TZ, Wang Y, Li S, Wang S, Matsuyama S, Yu G, Compans RW, Li JD, Prausnitz MR, Champion JA, Wang BZ (2018) Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci U S A 115(33):E7758–E7767CrossRefGoogle Scholar
  26. FAO (2009) Food and agriculture organization of the United Nations. Global agriculture towards 2050. High level expert forum: how to feed the world in 2050Google Scholar
  27. FDA (2004) US Food and Drug Administration Website. Critical path initiative web page. Challenges and opportunities. Available at http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm
  28. FDA (2016) Inactive ingredient search for approved drug products. Retrieved from http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm
  29. Feng JL, Qi JR, Yin SW, Wang JM, Guo J, Weng JY, Liu QR, Yang XQ (2015) Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point. J Agric Food Chem 63(26):6075–6083CrossRefGoogle Scholar
  30. Gheibi-Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536CrossRefGoogle Scholar
  31. Gregoriadis G (1973) Drug entrapment in liposomes. FEBS Lett 36(3):292–296CrossRefGoogle Scholar
  32. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300CrossRefGoogle Scholar
  33. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRefGoogle Scholar
  34. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 14:4723–4739CrossRefGoogle Scholar
  35. He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296CrossRefGoogle Scholar
  36. Hervé PL, Raliou M, Bourdieu C, Dubuquoy C, Petit-Camurdan A, Bertho N, Eléouët JF, Chevalier C, Riffault S (2014) A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol 88(1):325–338CrossRefGoogle Scholar
  37. Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40(2-4):89–107CrossRefGoogle Scholar
  38. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces 121:474–483CrossRefGoogle Scholar
  39. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRefGoogle Scholar
  40. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603CrossRefGoogle Scholar
  41. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297CrossRefGoogle Scholar
  42. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5− 40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786CrossRefGoogle Scholar
  43. Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A (2013) Rational HIV immunogen design to target specific germline B cell receptors. Science 340:711–716CrossRefGoogle Scholar
  44. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232CrossRefGoogle Scholar
  45. Joselevich E, Dai H, Liu J, Hata K, Windle AH (2007) Carbon nanotube synthesis and organization. In: Carbon nanotubes. Springer, Berlin, pp 101–165CrossRefGoogle Scholar
  46. Kalra J, Bally MB, Uchegbu IF, Schätzlein GA, Cheng PW, Lalatsa A (2013) Fundamentals of pharmaceutical nanoscience. Springer, New York, pp 27–63CrossRefGoogle Scholar
  47. Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z (2019) Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. Nanomedicine 16:206–216CrossRefGoogle Scholar
  48. Khan AU, Khan M, Malik N, Cho MH, Khan MM (2019) Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng 42(1):1–15CrossRefGoogle Scholar
  49. Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656CrossRefGoogle Scholar
  50. Kim IY, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416CrossRefGoogle Scholar
  51. Klug B, Reinhardt J, Robertson J (2012) Current status of regulations for DNA vaccines. In: Thalhamer J, Weiss R, Scheiblhofer S (eds) Gene vaccines. Springer, New York, pp 285–295CrossRefGoogle Scholar
  52. Korupalli C, Pan WY, Yeh CY, Chen PM, Mi FL, Tsai HW, Chang Y, Wei HJ, Sung HW (2019) Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials 216:119268CrossRefGoogle Scholar
  53. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710CrossRefGoogle Scholar
  54. Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH (2017) Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 46(1):158–196CrossRefGoogle Scholar
  55. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788CrossRefGoogle Scholar
  56. Li L, Petrovsky N (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 15(3):313–329CrossRefGoogle Scholar
  57. Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY (2019) Engineering magnetosomes for high-performance cancer vaccination. ACS Cent Sci 5(5):796–807Google Scholar
  58. Liang R, Xie J, Li J, Wang K, Liu L, Gao Y, Hussain M, Shen G, Zhu J, Tao J (2017) Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 149:41–50CrossRefGoogle Scholar
  59. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2-3):132–158CrossRefGoogle Scholar
  60. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239(1):62–84CrossRefGoogle Scholar
  61. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019CrossRefGoogle Scholar
  62. Luo M, Samandi LZ, Wang Z, Chen ZJ, Gao J (2017) Synthetic nanovaccines for immunotherapy. J Control Release 263:200–210CrossRefGoogle Scholar
  63. MacDonald KN, Piret JM, Levings MK (2019) Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 197(1):52–63Google Scholar
  64. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397CrossRefGoogle Scholar
  65. Mohammadpour R, Yazdimamaghani M, Cheney DL, Jedrzkiewicz J, Ghandehari H (2019) Subchronic toxicity of silica nanoparticles as a function of size and porosity. J Control Release 304:216–232CrossRefGoogle Scholar
  66. Mosquera MJ, Kim S, Zhou H, Jing TT, Luna M, Guss JD, Reddy P, Lai K, Leifer CA, Brito IL, Hernandez CJ, Singh A (2019) Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci Adv 5(3):eaav9788CrossRefGoogle Scholar
  67. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM (2019) Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine 14:1937–1952CrossRefGoogle Scholar
  68. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430CrossRefGoogle Scholar
  69. Nait Mohamed FA, Nouri A, Laraba-Djebari F (2017) Reactogenicity and safety assessment of an attenuated nanovaccine against scorpion envenomation: preclinical study. Vaccine 35:6657–6663CrossRefGoogle Scholar
  70. Nakayama Y, Aruga A (2015) Comparison of current regulatory status for gene-based vaccines in the U.S., Europe and Japan. Vaccine 3(1):186–202CrossRefGoogle Scholar
  71. Nguyen HT, Shen H (2016) The effect of PEGylation on the stimulation of IL-1β by gold (Au) nanoshell/silica core nanoparticles. J Mater Chem B 4(9):1650–1659CrossRefGoogle Scholar
  72. Nimesh S (2013) Poly(D,L-lactide-co-glycolide)-based nanoparticles. In: Nimesh S (ed) Woodhead Publishing series in biomedicine, gene therapy. Woodhead Publishing, Sawston, pp 309–329Google Scholar
  73. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516–1523CrossRefGoogle Scholar
  74. Park SK, Do Kim K, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids and Surf A 197(1-3):7–17CrossRefGoogle Scholar
  75. Peppas NA (2010) Biomedical applications of hydrogels handbook. Springer, New YorkGoogle Scholar
  76. Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36(41):6070–6076CrossRefGoogle Scholar
  77. Quach QH, Ang SK, Chu JJ, Kah JCY (2018) Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against denguevirus. Acta Biomater 78:224–235CrossRefGoogle Scholar
  78. Raman S, Machaidze G, Lustig A, Aebi U, Burkhard P (2006) Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomedicine 2:95–102CrossRefGoogle Scholar
  79. Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19(1):E195CrossRefGoogle Scholar
  80. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  81. Rodrigues TC, Oliveira MLS, Soares-Schanoski A, Chavez-Rico SL, Figueiredo DB, Gonçalves VM, Ferreira DM, Kunda NK, Saleem IY, Miyaji EN (2018) Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One 13(1):e0191692CrossRefGoogle Scholar
  82. Rohovie MJ, Nagasawa M, Swartz JR (2017) Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2(1):43–57CrossRefGoogle Scholar
  83. Rosales-Mendoza S (2013) Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 12(9):1011–1019CrossRefGoogle Scholar
  84. Saha PP, Bhowmik T, Dasgupta AK, Gomes A (2014) In vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1. Toxicol Rep 1:74–84CrossRefGoogle Scholar
  85. Sahana DK, Mittal G, Bhardwaj V, Kumar MR (2008) PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 97(4):1530–1542CrossRefGoogle Scholar
  86. Sardar R, Shumaker-Parry JS (2011) Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J Am Chem Soc 133(21):8179–8190CrossRefGoogle Scholar
  87. Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10(6):366–376Google Scholar
  88. Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC 80:30–40Google Scholar
  89. Slusher BS, Conn PJ, Frye S, Glicksman M, Arkin M (2013) Bringing together the academic drug discovery community. Nat Rev Drug Discov 12:811–812CrossRefGoogle Scholar
  90. Stamler JS, Taber RL, Califf RM (2003) Translation of academic discovery into societal benefit: proposal for a balanced approach. Am J Med 115:596–599CrossRefGoogle Scholar
  91. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  92. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534CrossRefGoogle Scholar
  93. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145CrossRefGoogle Scholar
  94. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  95. Wang XD, Shen ZX, Sang T, Cheng XB, Li MF, Chen LY, Wang ZS (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341(1):23–29CrossRefGoogle Scholar
  96. Wang K, Wen S, He L, Li A, Li Y, Dong H, Li W, Ren T, Shi D, Li Y (2018) “Minimalist” nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 12(7):6398–6409CrossRefGoogle Scholar
  97. Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, Liu G, Cheng T (2019) Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomater Sci 7(5):1794–1800CrossRefGoogle Scholar
  98. WHO (2014) A brief guide to emerging infectious diseases and zoonoses. World Health Organization Regional Office for South-East Asia, New DelhiGoogle Scholar
  99. Yan Y, Wang X, Lou P, Hu Z, Qu P, Li D, Li Q, Xu Y, Niu J, He Y, Zhong J, Huang Z (2019) A nanoparticle-based HCV vaccine with enhanced potency. J Infect Dis.  https://doi.org/10.1093/infdis/jiz228
  100. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880CrossRefGoogle Scholar
  101. Yi LI, Weifan Y, Huan Y (2019) Chimeric antigen receptor-engineered regulatory T lymphocytes: promise for immunotherapy of autoimmune disease. Cytotherapy 3249(19):30750–30759Google Scholar
  102. Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22(6):901–908CrossRefGoogle Scholar
  103. Yu HW (2016) Bridging the translational gap: collaborative drug development and dispelling the stigma of commercialization. Drug Discov Today 21(2):299–305CrossRefGoogle Scholar
  104. Zhai L, Tumban E (2016) Gardasil-9: a global survey of projected efficacy. Antivir Res 130:101–109CrossRefGoogle Scholar
  105. Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G, Zheng G, Fang W, Yang X (2016) Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des 94:392–402CrossRefGoogle Scholar
  106. Zhao K, Rong G, Hao Y, Yu L, Kang H, Wang X, Wang X, Jin Z, Ren Z, Li Z (2016) IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Sci Rep 6:25720CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations