Advertisement

Nanovaccines pp 267-318 | Cite as

Virus-Like Particles-Based Mucosal Nanovaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega
Chapter

Abstract

Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.

Keywords

Multimeric protein Protein assembly Respiratory syncytial virus Influenza virus Norwalk virus Phage 

References

  1. Aksoy P, Gottschalk EY, Meneses PI (2017) HPV entry into cells. Mutat Res Rev Mutat Res 772:13–22CrossRefGoogle Scholar
  2. Al-Barwani F, Young SL, Baird MA, Larsen DS, Ward VK (2014) Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS One 9(8):e104523CrossRefGoogle Scholar
  3. Alkadah A, Thiam F, Mounier M, Charpilienne A, Poncet D, Kohli E, Basset C (2013) Different profile and distribution of antigen specific T cells induced by intranasal and intrarectal immunization with rotavirus 2/6-VLP with and without LT-R192G. Vaccine 31(15):1924–1930CrossRefGoogle Scholar
  4. Bahamondez-Canas TF, Cui Z (2018) Intranasal immunization with dry powder vaccines. Eur J Pharm Biopharm 122:167–175CrossRefGoogle Scholar
  5. Bahceciler NN, Babayigit Hocaoglu A, Galip N (2014) A milestone in house dust-mite-allergen immunotherapy: the new sublingual tablet S-524101 (actair). Expert Rev Vaccines 13(12):1427–1438CrossRefGoogle Scholar
  6. Balke I, Zeltins A (2018) Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2018.08.007CrossRefGoogle Scholar
  7. Bandyopadhyay AS, Garon J, Seib K, Orenstein WA (2015) Polio vaccination: past, present and future. Future Microbiol 10(5):791–808CrossRefGoogle Scholar
  8. Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, Oh Y, Cho Y, Lee S (2017) Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res 40(11):1238–1248CrossRefGoogle Scholar
  9. Belshe RB, Mendelman PM, Treanor J, King J, Gruber WC, Piedra P et al (1998) The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Engl J Med 338:1405–1412CrossRefGoogle Scholar
  10. Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF (2008) Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur J Immunol 38(1):114–126CrossRefGoogle Scholar
  11. Bi Q, Ferreras E, Pezzoli L, Legros D, Ivers LC, Date K, Qadri F, Digilio L, Sack DA, Ali M, Lessler J, Luquero FJ, Azman AS, Oral Cholera Vaccine Working Group of the Global Task Force on Cholera Control (2017) Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. Lancet Infect Dis 17(10):1080–1088CrossRefGoogle Scholar
  12. Binjawadagi B, Lakshmanappa YS, Longchao Z, Dhakal S, Hiremath J, Ouyang K, Shyu DL, Arcos J, Pengcheng S, Gilbertie A, Zuckermann F, Torrelles JB, Jackwood D, Fang Y, Renukaradhya GJ (2016) Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 161(6):1579–1589CrossRefGoogle Scholar
  13. Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM (2005) Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J Virol 79:7059–7067CrossRefGoogle Scholar
  14. Carapetis JR, Steer AC, Mulholland EK, Weber M (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11):685–694CrossRefGoogle Scholar
  15. Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL (2019) Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 116(4):919–935CrossRefGoogle Scholar
  16. Chen JR, Yu YH, Tseng YC, Chiang WL, Chiang MF, Ko YA et al (2014) Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A 111:2467–2481Google Scholar
  17. Chichester JA, Green BJ, Jones RM, Shoji Y, Miura K, Long CA, Lee CK, Ockenhouse CF, Morin MJ, Streatfield SJ, Yusibov V (2018) Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a Phase 1 dose-escalation study in healthy adults. Vaccine 36(39):5865–5871CrossRefGoogle Scholar
  18. Chien MH, Wu SY, Lin CH (2018) Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides. Vet Immunol Immunopathol 197:69–75CrossRefGoogle Scholar
  19. Citarasu T, Lelin C, Babu MM, Anand SB, Nathan AA, Vakharia VN (2019) Oral vaccination of Macrobrachium rosenbergii with baculovirus-expressed M. rosenbergii nodavirus (MrNV) capsid protein induces protective immunity against MrNV challenge. Fish Shellfish Immunol 86:1123–1129CrossRefGoogle Scholar
  20. Collins PL, Crowe JE (2007) Respiratory syncytial virus and metapneumovirus. In: Knipe DM et al (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1601–1646Google Scholar
  21. Crisci E, Fraile L, Moreno N, Blanco E, Cabezón R, Costa C, Mussá T, Baratelli M, Martinez-Orellana P, Ganges L, Martínez J, Bárcena J, Montoya M (2012) Chimeric calicivirus-like particles elicit specific immune responses in pigs. Vaccine 30(14):2427–2439CrossRefGoogle Scholar
  22. Daniell H, Rai V, Xiao Y (2018) Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplast confers protection against all three poliovirus serotypes. Plant Biotechnol J 17(7):1357–1368.  https://doi.org/10.1111/pbi.13060CrossRefGoogle Scholar
  23. Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK (2018) Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 17(9):833–849CrossRefGoogle Scholar
  24. El-Kamary SS, Pasetti MF, Mendelman PM, Frey SE, Bernstein DI, Treanor JJ, Ferreira J, Chen WH, Sublett R, Richardson C, Bargatze RF, Sztein MB, Tacket CO (2010) Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J Infect Dis 202(11):1649–1658CrossRefGoogle Scholar
  25. Forsbach A, Nemorin JG, Völp K, Samulowitz U, Montino C, Müller C, Tluk S, Hamm S, Bauer S, Lipford GB, Vollmer J (2007) Characterization of conserved viral leader RNA sequences that stimulate innate immunity through TLRs. Oligonucleotides 17:405–417CrossRefGoogle Scholar
  26. Franco D, Liu W, Gardiner DF, Hahn BH, Ho DD (2011) CD40L-containing virus-like particle as a candidate HIV-1 vaccine targeting dendritic cells. J Acquir Immune Defic Syndr 56:393–400CrossRefGoogle Scholar
  27. Fuenmayor J, Gòdia F, Cervera L (2017) Production of virus-like particles for vaccines. New Biotechnol 39(Pt B):174–180CrossRefGoogle Scholar
  28. Gerber S, Lane C, Brown DM, Lord E, DiLorenzo M, Clements JD, Rybicki E, Williamson AL, Rose RC (2001) Human papillomavirus virus-like particles are efficient oral immunogens when coadministered with Escherichia coli heat-labile enterotoxin mutant R192G or CpG DNA. J Virol 75(10):4752–4760CrossRefGoogle Scholar
  29. Hall CB (2001) Respiratory syncytial virus and parainfluenza virus. N Engl J Med 344(25):1917–1928CrossRefGoogle Scholar
  30. Huy NX, Kim SH, Yang MS, Kim TG (2012) Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. Plant Cell Rep 31:1933–1942CrossRefGoogle Scholar
  31. Jackson EM, Herbst-Kralovetz MM (2012) Intranasal vaccination with murabutide enhances humoral and mucosal immune responses to a virus-like particle vaccine. PLoS One 7(7):e41529CrossRefGoogle Scholar
  32. Jiao YY, Fu YH, Yan YF, Hua Y, Ma Y, Zhang XJ, Song JD, Peng XL, Huang J, Hong T, He JS (2017) A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus. Antivir Res 144:57–69CrossRefGoogle Scholar
  33. Kang SM, Yao Q, Guo L, Compans RW (2003) Mucosal immunization with virus-like particles of simian immunodeficiency virus conjugated with cholera toxin subunit B. J Virol 77(18):9823–9830CrossRefGoogle Scholar
  34. Kim SH, Seo KW, Kim J, Lee KY, Jang YS (2010) The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J Immunol 185:5787–5795CrossRefGoogle Scholar
  35. Kingston NJ, Kurtovic L, Walsh R, Joe C, Lovrecz G, Locarnini S, Beeson JG, Netter HJ (2019) Hepatitis B virus-like particles expressing Plasmodium falciparum epitopes induce complement-fixing antibodies against the circumsporozoite protein. Vaccine 37(12):1674–1684CrossRefGoogle Scholar
  36. Lechner F, Jegerlehner A, Tissot AC, Maurer P, Sebbel P, Renner WA, Jennings GT, Bachmann MF (2002) Virus-like particles as a modular system for novel vaccines. Intervirology 45:212–217CrossRefGoogle Scholar
  37. Lee YT, Ko EJ, Lee Y, Kim KH, Kim MC, Lee YN, Kang SM (2018) Intranasal vaccination with M2e5x virus-like particles induces humoral and cellular immune responses conferring cross protection against heterosubtypic influenza viruses. PLoS One 13(1):e0190868CrossRefGoogle Scholar
  38. Leroux-Roels G, Cramer JP, Mendelman PM, Sherwood J, Clemens R, Aerssens A, De Coster I, Borkowski A, Baehner F, Van Damme P (2018) Safety and immunogenicity of different formulations of norovirus vaccine candidate in healthy adults: a randomized, controlled, double-blind clinical trial. J Infect Dis 217(4):597–607CrossRefGoogle Scholar
  39. Li TC, Suzaki Y, Ami Y, Dhole TN, Miyamura T, Takeda N (2004) Protection of cynomolgus monkeys against HEV infection by oral administration of recombinant hepatitis E virus-like particles. Vaccine 22(3-4):370–377CrossRefGoogle Scholar
  40. Liljeroos L, Malito E, Ferlenghi I, Bottomley MJ (2015) Structural and computational biology in the design of immunogenic vaccine antigens. J Immunol Res 2015:156241CrossRefGoogle Scholar
  41. Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, Smith G (2011) Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 29(38):6606–6613CrossRefGoogle Scholar
  42. Maurer P, Bachmann MF (2007) Vaccination against nicotine: an emerging therapy for tobacco dependence. Expert Opin Investig Drugs 16(11):1775–1783CrossRefGoogle Scholar
  43. Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, Renner WA, Müller P, Bachmann MF (2005) A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol 35:2031–2040CrossRefGoogle Scholar
  44. Mohsen MO, Gomes AC, Cabral-Miranda G, Krueger CC, Leoratti FM, Stein JV, Bachmann MF (2017) Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J Control Release 251:92–100CrossRefGoogle Scholar
  45. Mohsen MO, Gomes AC, Vogel M, Bachmann MF (2018) Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccine 6(3):E37CrossRefGoogle Scholar
  46. Moura APV, Santos LCB, Brito CRN, Valencia E, Junqueira C, Filho AAP, Sant’Anna MRV, Gontijo NF, Bartholomeu DC, Fujiwara RT, Gazzinelli RT, McKay CS, Sanhueza CA, Finn MG, Marques AF (2017) Virus-like particle display of the α-Gal carbohydrate for vaccination against leishmania infection. ACS Cent Sci 3(9):1026–1031CrossRefGoogle Scholar
  47. Nardelli-Haefliger D, Roden R, Balmelli C, Potts A, Schiller J, De Grandi P (1999) Mucosal but not parenteral immunization with purified human papillomavirus type 16 virus-like particles induces neutralizing titers of antibodies throughout the estrous cycle of mice. J Virol 73(11):9609–9613Google Scholar
  48. Nerome K, Matsuda S, Maegawa K, Sugita S, Kuroda K, Kawasaki K, Nerome R (2017) Quantitative analysis of the yield of avian H7 influenza virus haemagglutinin protein produced in silkworm pupae with the use of the codon-optimized DNA: a possible oral vaccine. Vaccine 35(5):738–746CrossRefGoogle Scholar
  49. Nichol KL, Mendelman PM, Mallon KP, Jackson LA, Gorse GJ, Belshe RB et al (1999) Effectiveness of live, attenuated intranasal influenza virus vaccine in healthy, working adults: a randomized controlled trial. JAMA 282(2):137–144CrossRefGoogle Scholar
  50. Niikura M, Takamura S, Kim G, Kawai S, Saijo M, Morikawa S, Kurane I, Li TC, Takeda N, Yasutomi Y (2002) Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology 293(2):273–280CrossRefGoogle Scholar
  51. Nishiyama T, Kobayashi T, Jirintai S, Kii I, Nagashima S, Prathiwi Primadharsini P, Nishizawa T, Okamoto H (2019) Screening of novel drugs for inhibiting hepatitis E virus replication. J Virol Methods 270:1–11CrossRefGoogle Scholar
  52. O’Neil A, Reichhardt C, Johnson B, Prevelige PE, Douglas T (2011) Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22. Angew Chem Int Ed 50(32):7425–7428CrossRefGoogle Scholar
  53. Park SB (2012) Hepatitis E vaccine debuts. Nature 491(7422):21–22CrossRefGoogle Scholar
  54. Patterson DP, Rynda-Apple A, Harmsen AL, Harmsen AG, Douglas T (2013) Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7(4):3036–3044CrossRefGoogle Scholar
  55. Paula FL, Sardi SI, Tigre DM, Fernandes FMC, Campos GS (2018) Acute gastroenteritis associated with norovirus GII.4 variants. Arq Gastroenterol 55(3):264–266CrossRefGoogle Scholar
  56. Peiris JS, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat Med 10:S88–S97CrossRefGoogle Scholar
  57. Pillet S, Aubin É, Trépanier S, Poulin JF, Yassine-Diab B, Ter Meulen J, Ward BJ, Landry N (2018) Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ Vaccines 3:3CrossRefGoogle Scholar
  58. Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36(41):6070–6076CrossRefGoogle Scholar
  59. Poteet E, Lewis P, Chen C, Ho SO, Do T, Chiang S, Labranche C, Montefiori D, Fujii G, Yao Q (2016) Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine 34(48):5886–5894CrossRefGoogle Scholar
  60. Qi Y, Kang H, Zheng X, Wang H, Gao Y, Yang S, Xia X (2015) Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Front Microbiol 6:169Google Scholar
  61. Rahman MA, Robert-Guroff M (2019) Accelerating HIV vaccine development using non-human primate models. Expert Rev Vaccines 18(1):61–73CrossRefGoogle Scholar
  62. Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Wang Z, Gao Y, Xia X (2018) Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine 36(40):5990–5998CrossRefGoogle Scholar
  63. Rivera-Hernandez T, Hartas J, Wu Y, Chuan YP, Lua LH, Good M, Batzloff MR, Middelberg AP (2013) Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine 31(15):1950–1955CrossRefGoogle Scholar
  64. Rosales-Mendoza S, Nieto-Gómez R, Angulo C (2017) A perspective on the development of plant-made vaccines in the fight against Ebola virus. Front Immunol 8:252CrossRefGoogle Scholar
  65. Salazar-González JA, Angulo C, Rosales-Mendoza S (2015) Chikungunya virus vaccines: current strategies and prospects for developing plant-made vaccines. Vaccine 33(31):3650–3658CrossRefGoogle Scholar
  66. Schwarz B, Morabito KM, Ruckwardt TJ, Patterson DP, Avera J, Miettinen HM, Graham BS, Douglas T (2016) Virus like particles encapsidating respiratory syncytial virus M and M2 proteins induce robust T cell responses. ACS Biomater Sci Eng 2(12):2324–2332CrossRefGoogle Scholar
  67. Serradell MC, Rupil LL, Martino RA, Prucca CG, Carranza PG, Saura A, Fernández EA, Gargantini PR, Tenaglia AH, Petiti JP, Tonelli RR, Reinoso-Vizcaino N, Echenique J, Berod L, Piaggio E, Bellier B, Sparwasser T, Klatzmann D, Luján HD (2019) Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun 10(1):361CrossRefGoogle Scholar
  68. Seth A, Kong IG, Lee SH, Yang JY, Lee YS, Kim Y, Wibowo N, Middelberg AP, Lua LH, Kweon MN (2016) Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine 34(51):6472–6480CrossRefGoogle Scholar
  69. Sheerin D, Openshaw PJ, Pollard AJ (2017) Issues in vaccinology: present challenges and future directions. Eur J Immunol 47(12):2017–2025CrossRefGoogle Scholar
  70. Skountzou I, Quan FS, Gangadhara S, Ye L, Vzorov A, Selvaraj P et al (2007) Incorporation of glycosylphosphatidylinositol-anchored granulocyte-macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J Virol 81:1083–1094CrossRefGoogle Scholar
  71. Springer MJ, Ni Y, Finger-Baker I, Ball JP, Hahn J, DiMarco AV, Kobs D, Horne B, Talton JD, Cobb RR (2016) Preclinical dose-ranging studies of a novel dry powder norovirus vaccine formulation. Vaccine 34(12):1452–1458CrossRefGoogle Scholar
  72. Strable E, Prasuhn DE Jr, Udit AK, Brown S, Link AJ, Ngo JT, Lander G, Quispe J, Potter CS, Carragher B, Tirrell DA, Finn MG (2008) Unnatural amino acid incorporation into virus-like particles. Bioconjug Chem 19:866–875CrossRefGoogle Scholar
  73. Tamura S, Ainai A, Suzuki T, Kurata T, Hasegawa H (2016) Intranasal inactivated influenza vaccines: a reasonable approach to improve the efficacy of influenza vaccine? Jpn J Infect Dis 69(3):165–179CrossRefGoogle Scholar
  74. Treanor JJ, Kotloff K, Betts RF, Belshe R, Newman F, Iacuzio D et al (1999) Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 18:899–906CrossRefGoogle Scholar
  75. Velasquez LS, Shira S, Berta AN, Kilbourne J, Medi BM, Tizard I, Ni Y, Arntzen CJ, Herbst-Kralovetz MM (2011) Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine 29(32):5221–5231CrossRefGoogle Scholar
  76. Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, Johns L, Holbrook MR (2018) A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2:21CrossRefGoogle Scholar
  77. Wang BZ, Xu R, Quan FS, Kang SM, Wang L, Compans RW (2010) Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PloS One 5(11):e13972CrossRefGoogle Scholar
  78. Wiley JA, Richert LE, Swain SD, Harmsen A, Barnard DL, Randall TD, Jutila M, Douglas T, Broomell C, Young M, Harmsen A (2009) Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS One 4(9):e7142CrossRefGoogle Scholar
  79. Wu X, Zhai X, Lai Y, Zuo L, Zhang Y, Mei X, Xiang R, Kang Z, Zhou L, Wang H (2019) Construction and immunogenicity of novel chimeric virus-like particles bearing antigens of infectious bronchitis virus and Newcastle disease virus. Viruses 11(3):E254CrossRefGoogle Scholar
  80. Yang M, Lai H, Sun H, Chen Q (2017) Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Sci Rep 7(1):7679CrossRefGoogle Scholar
  81. Zhao Q, Li S, Yu H, Xia N, Modis Y (2013) Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 31(11):654–663CrossRefGoogle Scholar
  82. Zheng D, Chen S, Qu D, Chen J, Wang F, Zhang R, Chen Z (2016) Influenza H7N9 LAH-HBc virus-like particle vaccine with adjuvant protects mice against homologous and heterologous influenza viruses. Vaccine 34(51):6464–6471CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations