Advertisement

Neuromuscular Factors Related to Hamstring Muscle Function, Performance and Injury

  • Matthew BourneEmail author
  • Joke Schuermans
  • Erik Witvrouw
  • Per Aagaard
  • Anthony Shield
Chapter

Abstract

Hamstring function is influenced by a number of neural, architectural and morphological factors, and the adaptability of these characteristics has important implications for optimizing performance and reducing injury risk. High rates of maximal or near-maximal hamstring force development are required to generate peak horizontal velocities during running, and this is largely determined by the extent to which these muscles can be voluntarily activated. Greater eccentric hamstring strength also correlates with better acceleration capacity and likely improves the ability to decelerate the lower limb during the presumably injurious terminal swing phase of high-speed running. The intra- and intermuscular coordination of the hamstrings appears to influence both hamstring muscle fatiguability and the risk of muscle strain injury. Muscle volume and architectural features such as fascicle length and pennation angle also influence hamstring function, and these vary considerably between hamstring muscles, between individuals and with training status. The adaptability of these features has been explored to a significant extent in recent times, and careful exercise selection allows selective targeting of individual hamstring muscles or muscle segments and this appears to influence the pattern of chronic adaptations such as muscle hypertrophy. Short fascicles within the often-injured long head of biceps femoris may predispose athletes to strain injury but these appear to respond in a contraction-mode-specific manner; lengthening after eccentric training and shortening after concentric training of 4 or more weeks. Conventional training with eccentric and concentric phases in each repetition can also lengthen fascicles, possibly in an excursion (muscle length)-dependent manner. A large biceps femoris muscle to proximal aponeurosis width ratio has been proposed as a potential risk factor for hamstring strain injury, although this is only supported by biomechanical modelling at the time of writing. High levels of anterior pelvic tilt and lateral trunk flexion during sprint running may also predispose athletes to hamstring strain injury, although the quantity of evidence for this is small at the moment. At present, the optimal methods for altering coordination and running technique are not known.

References

  1. 1.
    Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Comfort P, Bullock N, Pearson SJ. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J Strength Cond Res. 2012;26(4):937–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    McBride JM, Blow D, Kirby TJ, Haines TL, Dayne AM, Triplett NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res. 2009;23(6):1633–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):66–76.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ishoi L, Aagaard P, Nielsen MF, Thornton KB, Krommes KK, Holmich P, et al. The influence of hamstring muscle peak torque and rate of torque development for sprinting performance in football players: a cross-sectional study. Int J Sports Physiol Perform. 2018;14:665–73.CrossRefGoogle Scholar
  6. 6.
    Markovic G, Sarabon N, Boban F, Zoric I, Jelcic M, Sos K, et al. Nordic hamstring strength of highly trained youth football players and its relation to sprint performance. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002800.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ishoi L, Holmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the nordic hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):1663–72.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Krommes K, Petersen J, Nielsen MB, Aagaard P, Holmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week nordic hamstring exercise protocol: a randomised pilot study. BMC Res Notes. 2017;10(1):669.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–50.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Swanson SC, Caldwell GE. An integrated biomechanical analysis of high speed incline and level treadmill running. Med Sci Sports Exerc. 2000;32(6):1146–55.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Simonsen EB, Thomsen L, Klausen K. Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol. 1985;54(5):524–32.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Morin JB, Gimenez P, Edouard P, Arnal P, Jimenez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Aagaard P. Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: effects of resistance training. J Sport Health Sci. 2018;7(3):282–93.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):2249–57.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Andersen LL, Andersen JL, Magnusson SP, Aagaard P. Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. Eur J Appl Physiol. 2005;93(5–6):511–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy RD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251–67.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):329–36.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    van Dyk N, Bahr R, Whiteley R, Tol JL, Kumar BD, Hamilton B, et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 2016;44(7):1789–95.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in australian footballers. Med Sci Sports Exerc. 2014;47(4):857–65.CrossRefGoogle Scholar
  25. 25.
    Timmins R, Bourne M, Shield A, Williams M, Lorenzon C, Opar D. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bourne M, Opar DA, Williams M, Shield A. Eccentric knee-flexor strength and hamstring injury risk in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    van Dyk N, Bahr R, Burnett AF, Whiteley R, Bakken A, Mosler A, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sport Med. 2017;51(23):1695.CrossRefGoogle Scholar
  28. 28.
    Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sport Med. 2008;36(7):1403–9.CrossRefGoogle Scholar
  29. 29.
    Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport. 2010;13(1):120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30:573–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Timmins RG, Opar DA, Williams MD, Schache AG, Dear NM, Shield AJ. Reduced biceps femoris myoelectrical activity influences eccentric knee flexor weakness after repeat sprint running. Scand J Med Sci Sports. 2014;24(4):e299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Duhig SJ, Williams MD, Minett GM, Opar D, Shield AJ. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity. J Sci Med Sport. 2017;20(6):595–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Garrett W, Safran M, Seaber AV, Glisson RR, Ribbeck B. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sport Med. 1987;15(6):448–54.CrossRefGoogle Scholar
  34. 34.
    Lord C, Ma'ayah F, Blazevich AJ. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players. Scand J Med Sci Sports. 2018;28(3):1235–43.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Freckleton G, Cook J, Pizzari T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br J Sports Med. 2014;48(8):713–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Susceptibility to hamstring injuries in soccer: a prospective study using muscle functional magnetic resonance imaging. Am J Sports Med. 2016;44(5):1276–85.CrossRefGoogle Scholar
  37. 37.
    Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663–72.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Biceps femoris and semitendinosus-teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med. 2014;48(22):1599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schuermans J, Danneels L, Van Tiggelen D, Palmans T, Witvrouw E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. Am J Sports Med. 2017;45(6):1315–25.CrossRefGoogle Scholar
  40. 40.
    Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–7.CrossRefGoogle Scholar
  41. 41.
    Schuermans J, Van Tiggelen D, Witvrouw E. Prone hip extension muscle recruitment is associated with hamstring injury risk in amateur soccer. Int J Sports Med. 2017;38(9):696–706.PubMedCrossRefGoogle Scholar
  42. 42.
    Avrillon S, Guilhem G, Barthelemy A, Hug F. Coordination of hamstrings is individual-specific and is related to motor performance. J Appl Physiol (1985). 2018;125:1069–79.CrossRefGoogle Scholar
  43. 43.
    Bourne MN, Opar DA, Al Najjar A, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.PubMedCrossRefGoogle Scholar
  45. 45.
    van der Horst N, Smits DW, Petersen J, Goedhart EA, Backx FJ. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181(1):1–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467(4):1074–82.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125–41.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop Relat Res. 1983;179:275-83.CrossRefGoogle Scholar
  52. 52.
    Bourne MN, Timmins RG, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of the nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Handsfield GG, Knaus KR, Fiorentino NM, Meyer CH, Hart JM, Blemker SS. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports. 2017;27(10):1050–60.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943–53.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):1125–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985). 2000;88(3):811–6.CrossRefGoogle Scholar
  59. 59.
    Herzog W, Read L. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat. 1993;182(Pt 2):213.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Spoor CW, van Leeuwen JL, Meskers CG, Titulaer AF, Huson A. Estimation of instantaneous moment arms of lower-leg muscles. J Biomech. 1990;23(12):1247–59.PubMedCrossRefGoogle Scholar
  61. 61.
    Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther. 1986;66(3):351–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Nemeth G, Ohlsen H. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J Biomech. 1985;18(2):129–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Hum Sci. 2001;20(2):141–7.CrossRefGoogle Scholar
  64. 64.
    Timmins RG. Biceps femoris long head muscle architecture a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Timmins RG, Bourne MN, Hickey JT, Maniar N, Tofari PJ, Williams MD, et al. Effect of prior injury on changes to biceps femoris architecture across an australian football league season. Med Sci Sports Exerc. 2017;49(10):2102–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47(6):351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pimenta R, Blazevich AJ, Freitas SR. Biceps femoris long-head architecture assessed using different sonographic techniques. Med Sci Sports Exerc. 2018;50(12):2584–94.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32:1254–62.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lovell R, Knox M, Weston M, Siegler JC, Brennan S, Marshall PWM. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sports. 2018;28(2):658–66.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and nordic hamstring exercise architectural adaptations: impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706–15.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Duhig SJ, Bourne MN, Buhmann RL, Williams MD, Minett GM, Roberts LA, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport. 2019;22(7):769–74.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lacome M, Avrillon S, Cholley Y, Simpson B, Guilhem G, Buchheit M. Hamstring eccentric strengthening program: does training volume matter? Int J Sport Physiol. 2019;2019:1–27.Google Scholar
  78. 78.
    Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):1207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35(12):2013–22.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chen TC, Nosaka K, Sacco P. Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol (1985). 2007;102(3):992–9.CrossRefGoogle Scholar
  81. 81.
    Brockett C, Morgan D, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lynn R, Morgan D. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol. 1994;77(3):1439–44.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lynn R, Talbot J, Morgan D. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol. 1998;85(1):98.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gleeson N, Eston R, Marginson V, McHugh M. Effects of prior concentric training on eccentric exercise induced muscle damage. Br J Sports Med. 2003;37(2):119–25; discussion 25.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tidball JG. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991;19:419–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Koulouris G, Connell DA, Brukner P, Schneider-Kolsky M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sport Med. 2007;35(9):1500–6.CrossRefGoogle Scholar
  88. 88.
    Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Evangelidis PE, Massey GJ, Pain MT, Folland JP. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sports Exerc. 2015;47(7):1383–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45(4):647–52.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wakahara T, Ema R, Miyamoto N, Kawakami Y. Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle. Eur J Appl Physiol. 2015;115(2):309–16.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Abe T, Kumagai K, Bemben MG. Muscle aponeurosis area is greater in hypertrophied than in normal muscle. J Gen Intern Med. 2012;27:399.Google Scholar
  93. 93.
    Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjaer M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci Sports. 2017;27(12):1547–59.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Matthew Bourne
    • 1
    Email author
  • Joke Schuermans
    • 2
  • Erik Witvrouw
    • 2
  • Per Aagaard
    • 3
  • Anthony Shield
    • 4
  1. 1.School of Allied Health Sciences, Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
  2. 2.Department of Rehabilitation Science, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
  3. 3.Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and BiomechanicsUniversity of Southern DenmarkOdenseDenmark
  4. 4.School of Exercise and Nutrition Sciences & Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations