Advertisement

Extrinsic and Intrinsic Risk Factors Associated with Hamstring Injury

  • Tania PizzariEmail author
  • Brady Green
  • Nicol van Dyk
Chapter

Abstract

Many studies have evaluated factors associated with the athlete (intrinsic) and factors that are external to the athlete (extrinsic) for their relationship with hamstring injury. Over time these intrinsic and extrinsic factors have been examined across a large spectrum of athletic populations with varying degrees of rigour and consistency. Recently the value of much of the risk factor literature has been questioned, owing to several notable shortcomings: (1) the low quality of many studies, (2) the conflicting findings between studies, (3) the failure to recognise the interactions between risk factors, and (4) the dynamic nature of risk profiles within and between athletes. Increased chronological age and a history of previous hamstring strain are commonly, although not consistently, identified factors that place an athlete at a greater risk of hamstring strain. These non-modifiable risk factors (age and previous history) can potentially be mediated by improving eccentric hamstring strength and addressing muscle maladaptation to injury. Of the intrinsic risk factors that are ‘modifiable’, those related to the strength qualities and structural properties of the hamstrings have been shown to have a relationship with future injury. Extrinsic factors, particularly those related to match demands and training workloads, are also associated with hamstring injury and warrant consideration when managing athletes. This chapter has three key objectives: (1) present risk factors associated with future hamstring injury, (2) describe how factors interact or are impacted by other moderators to influence the risk profile of athletes, and (3) develop take-home messages regarding how to apply evidence about risk factors to practical situations and clinical decision-making in the real world.

References

  1. 1.
    Van Mechelen W, Hlobil H, Kemper HC. Incidence, severity, aetiology and prevention of sports injuries. Sports Med. 1992;14(2):82–99.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    de Visser HM, Reijman M, Heijboer MP, Bos PK. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46(2):124–30.Google Scholar
  3. 3.
    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47:351–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Opar DA, M W, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42:209–26.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    van Beijsterveldt AMC, van de Port IGL, Vereijken AJ, Backx FJG. Risk factors for hamstring injuries in male soccer players: a systematic review of prospective studies. Scand J Sci Med Sports. 2013;23:253–62.CrossRefGoogle Scholar
  6. 6.
    Bittencourt NFN, Meeuwisse WH, Mendonca LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br J Sports Med. 2016;50(21):1309–14.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–5.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Finch C. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9(1-2):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Meeuwisse WH. Assessing causation in sport injury: a multifactorial model. Clin J Sport Med. 1994;4(3):166–70.CrossRefGoogle Scholar
  10. 10.
    Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39(6):324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17(3):215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    O’Brien J, Finch CF, Pruna R, McCall A. A new model for injury prevention in team sports: the Team-sport Injury Prevention (TIP) cycle. Sci Med Football. 2019;3(1):77–80.CrossRefGoogle Scholar
  13. 13.
    Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports Med. 2003;37(5):384–92.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shadle IB, Cacolice PA. Eccentric exercises reduce hamstring strains in elite adult male soccer players: a critically appraised topic. J Sport Rehabil. 2017;26(6):573–7.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Varley MC, Gabbett T, Aughey RJ. Activity profiles of professional soccer, rugby league and Australian football match play. J Sports Sci. 2014;32(20):1858–66.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bahr R. Why screening tests to predict injury do not work-and probably never will...: a critical review. Br J Sports Med. 2016;50(13):776–80.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hulin BT, Gabbett TJ. Indeed association does not equal prediction: the never-ending search for the perfect acute:chronic workload ratio. Br J Sports Med. 2019;53(3):144–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Turner NA, Cree NJ, Comfort NP, Jones NL, Chavda NS, Bishop NC, Reynolds NA. Hamstring strain prevention in elite soccer players. Strength Condition J. 2014;36(5):10–20.CrossRefGoogle Scholar
  19. 19.
    Ruddy JD, Pollard CW, Timmins RG, Williams MD, Shield AJ, Opar DA. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med. 2018;52(14):919–28.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Verhagen E, van Dyk N, Clark N, Shrier I. Do not throw the baby out with the bathwater; screening can identify meaningful risk factors for sports injuries. Br J Sports Med. 2018;52(19):1223–4.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dalton SJ, Kerr ZY, Dompier TP. Epidemiology of hamstring strains in 25 NCAA sports in the 2009-2010 to 2013-2014 academic years. Am J Sports Med. 2015;43:2671–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dauty M, Menu P, Fouasson-Chailloux A. Cutoffs of isokinetic strength ratio and hamstring strain prediction in professional soccer players. Scand J Med Sci Sports. 2018;28(1):276–81.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA Injury Study. Am J Sports Med. 2013;41(2):327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857–65.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Orchard J, Marsden J, Lord S, Garlick D. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med. 1997;25(1):81–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schuermans J, Van Tiggelan D, Witvrouw E. Prone hip extension muscle recruitment is associated with hamstring injury risk in amateur soccer. Int J Sports Med. 2017;38:696–706.CrossRefGoogle Scholar
  28. 28.
    van Dyk N, R B, Whiteley R, Tol JL, Kumar BD, Hamilton B, Farooq A, Witvrouw E. Hamstrings and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 2016;44(7):1789–95.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Venturelli M, Schena F, Zanolla L, Bishop D. Injury risk factors in young soccer players detected by a multivariate survival model. J Sci Med Sport. 2011;14(4):293–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yeung SS, Suen AM, Yeung EW. A prospective cohort study of hamstring injuries in competitive sprinters: preseason muscle imbalance as a possible risk factor. Br J Sports Med. 2009;43(8):589–94.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Orchard J, Farhart P, Leopold C. Lumbar spine region pathology and hamstring and calf injuries in athletes: is there a connection? Br J Sports Med. 2004;38:502–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bennell K, Tully E, Harvey N. Does the toe-touch test predict hamstring injury in Australian Rules footballers? Austr J Physiother. 1999;45:103–9.CrossRefGoogle Scholar
  33. 33.
    Gabbe BJ, Finch CF, Bennell KL, Wajswelner H. Risk factors for hamstring injuries in community level Australian football. Br J Sports Med. 2005;39:106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schuermans J, Danneels L, Van Tiggelan D, Palmans T, Witvrouw E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. Am J Sports Med. 2017;45:1315–25.CrossRefGoogle Scholar
  35. 35.
    Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Risk factors for injuries in football. Am J Sports Med. 2004;32(1 Suppl):5S–16S.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Faulkner JA, Davis CS, Mendias CL, Brooks SV. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin J Sport Med. 2008;18(6):501–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013;3(4):346–50.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kostka T. Quadriceps maximal power and optimal shortening velocity in 335 men aged 23–88 years. Eur J Appl Physiol. 2005;95(2-3):140–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Eskurza I, Donato AJ, Moreau KL, Seals DR, Tanaka H. Changes in maximal aerobic capacity with age in endurance-trained women: 7-yr follow-up. J Appl Physiol (1985). 2002;92(6):2303–8.CrossRefGoogle Scholar
  40. 40.
    Korhonen MT, Mero A, Suominen H. Age-related differences in 100-m sprint performance in male and female master runners. Med Sci Sports Exerc. 2003;35(8):1419–28.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Narici MV, Maffulli N, Maganaris CN. Ageing of human muscles and tendons. Disabil Rehabil. 2008;30(20-22):1548–54.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34(11):1091–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Doherty TJ, Vandervoort AA, Brown WF. Effects of ageing on the motor unit: a brief review. Can J Appl Physiol. 1993;18(4):331–58.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. 2010;21(4):543–59.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J Appl Physiol. 1993;74:868–74.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kido A, Tanaka N, Stein RB. Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol. 2004;82(4):238–48.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Webber SC, Porter MM, Gardiner PF. Modeling age-related neuromuscular changes in humans. Appl Physiol Nutr Metab. 2009;34(4):732–44.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bertelsen ML, Hulme A, Petersen J, Brund R o, Sorensen H, Finch CF, et al. A framework for the etiology of running-related injuries. Scand J Med Sci Sports. 2017;27(11):1170–80.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Rogalski B, Dawson B, Heasman J, Gabbett TJ. Training and game loads and injury risk in elite Australian footballers. J Sci Med Sport. 2013;16(6):499–503.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Freckleton G, Cook J, Pizzari T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br J Sports Med. 2014;48(8):713–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50:273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, Bahr R. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.CrossRefGoogle Scholar
  53. 53.
    Gibbs NJ, Cross TM, Houang MT. The accuracy of MRI in predicting recovery and recurrence of acute grade one muscle strains within the same season in Australian Rules football players. J Sci Med Sport. 2004;7:248–58.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Verrall G, Slavotinek JP, Barnes PG, Fon G, Esterman A. Assessment of physical Eexamination and magentic resonance imaging findings of hamstringi njury as predictors for recurrent Injury. J Orthop Sports Phys Ther. 2006;36:215–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cameron M, Adams R, Maher C. Motor control and strength as predictors of hamstring injury in elite players of Australian football. Phys Ther Sport. 2003;4:159–66.CrossRefGoogle Scholar
  57. 57.
    van Dyk N, Bahr R, Burnett AF, Verhagen E, von Tiggelen D, Witvrouw E. No association between rate of torque development and onset of muscle activity with increased risk of hamstring injury in elite football. Scand J Med Sci Sports. 2018;28(10):2153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    van Dyk N, Bahr R, Burnett AF, Whiteley R, Bakken A, Mosler A, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sports Med. 2017;51(23):1695–702.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    van Dyk N, Farooq A, Bahr R, Witvrouw E. Hamstring and ankle flexibility deficits are weak risk factors for hamstring injury in professional soccer players: a prospective cohort study of 438 players including 78 injuries. Am J Sports Med. 2018;46(9):2203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hamilton GM, Meeuwisse WH, Emery CA, Steele RJ, Shrier I. Past injury as a risk factor: an illustrative example where appearances are deceiving. Am J Epidemiol. 2011;173(8):941–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Verrall GM, J S, Barnes PG, Fon GT, Spriggins AJ. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med. 2001;35:435–40.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Malliaropoulos N, Bikos G, Meke M, Vasileios K, Valle X, Lohrer H, et al. Higher frequency of hamstring injuries in elite track and field athletes who had a previous injury to the ankle – a 17 years observational cohort study. J Foot Ankle Res. 2018;11:7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Koulouris G, Connell DA, Brukner P, Schneider KM. Magentic resonance imaging parameters for assessing risk of recurrent hamtring injuries in elite athletes. Am J Sports Med. 2007;35:1500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Orchard J, Seward H, Orchard J, Driscoll T. The speed-fatigue trade off in hamstring aetiology: analysis of 2011 AFL injury data. Sport Health. 2013;31(3):53–7.Google Scholar
  66. 66.
    Orchard JW, Driscoll T, Seward H, Orchard JJ. Relationship between interchange usage and risk of hamstring injuries in the Australian Football League. J Sci Med Sport. 2012;15(3):201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50:1524–35.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Brooks JHM, Fuller CW, Kemp SPT, DB R. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34:1297–306.CrossRefGoogle Scholar
  69. 69.
    Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Orchard JW. Soft tissue injuries in the Australian Football League: seasons 1992–2008. Saarbrucken: LAP Lambert Academic; 2009.Google Scholar
  71. 71.
    Gastin PB, Meyer D, Huntsman E, Cook J. Increase in injury risk with low body mass and aerobic-running fitness in elite Australian football. Int J Sports Physiol Perform. 2015;10(4):458–63.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Whiteley R, Farooq A, Johnson A. Development of a data-based interval kicking program for preparation and rehabilitation purposes in professional football. Sci Med Football. 2017;1(2):107–16.CrossRefGoogle Scholar
  73. 73.
    Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665–74.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519–28.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Elliott MCCW, Zarinis B, Powell JW, Kenyon CD. Hamstring muscle strains in professional football players: a 10-year review. Am J Sports Med. 2011;39:843–50.CrossRefGoogle Scholar
  76. 76.
    Zvijac JE, Toriscelli TA, Merrick S, Kiebzak GM. Isokinetic concentric quadriceps and hamstring strength variables from the NFL Scouting Combine are not predictive of hamstring injury in first-year professional football players. Am J Sports Med. 2013;41(7):1511–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Brooks JHM, S K. Injury-prevention priorities according to playing position in professional rugby union players. Br J Sports Med. 2011;45:765–75.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Duhig S, Shield AJ, Opar DA, Gabbett TJ, Ferguson C, Williams MD. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50:1536–40.CrossRefGoogle Scholar
  79. 79.
    Burkett LN. Causative factors in hamstring strains. Med Sci Sports. 1970;2(1):39–42.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2017;52(5):329–36.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30(2):199–203.CrossRefGoogle Scholar
  82. 82.
    Maniar N, Shield AJ, Williams MD, Timmins RG, Opar DA. Hamstring strength and flexibility after hamstring strain injury: a systematic review and meta-analysis. Br J Sports Med. 2016;50(15):909–20.CrossRefGoogle Scholar
  83. 83.
    Silder A, Thelen DG, Heiderscheit BC. Effects of prior hamstring strain injury on strength, flexibility, and running mechanics. Clin Biomech (Bristol, Avon). 2010;25(7):681–6.CrossRefGoogle Scholar
  84. 84.
    Sole G, Milosavljevic S, Nicholson HD, Sullivan SJ. Selective strength loss and decreased muscle activity in hamstring injury. J Orthop Sports Phys Ther. 2011;41(5):354–63.CrossRefGoogle Scholar
  85. 85.
    Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    van Dyk N, Behan FP, Whitley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–70PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    van den Tillaar R, Solheim JAB, Bencke J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int J Sports Phys Ther. 2017;12(5):718–27.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Goossens L, Witvrouw E, Vanden Bossche L, De Clercq D. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students. Eur J Sport Sci. 2015;15(5):436–42.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lee JWY, Mok K-M, Chan HCK, Yung PSH, Chan K-M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: a prospective study of 146 professional players. J Sci Med Sport. 2018;21(8):789–93.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yamamoto T. Relationship between hamstring strains and leg muscle strength. A follow-up study of collegiate track and field athletes. J Sports Med Phys Fitness. 1993;33(2):194–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wollin M, Thorborg K, Pizzari T. Monitoring the effect of football match congestion on hamstring strength and lower limb flexibility: potential for secondary injury prevention? Phys Ther Sport. 2018;29:14–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schache AG, Crossley KM, Macindoe IG, Fahrner BB, Pandy MG. Can a clinical test of hamstring strength identify football players at risk of hamstring strain? Knee Surg Sports Traumatol Arthrosc. 2011;19(1):38–41.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Charlton P, Raysmith B, Rice S, Wollin M, Purdam C, Clark R, Drew M. Strength, not flexibility is responsive to match-play in Australian Football athletes. J Sci Med Sport. 2018;21:S63.CrossRefGoogle Scholar
  95. 95.
    Charlton PC, Raysmith B, Wollin M, Rice S, Purdam C, Clark RA, Drew MK. Knee flexion strength is significantly reduced following competition in semi-professional Australian Rules football athletes: implications for injury prevention programs. Phys Ther Sport. 2018;31:9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wollin M, Thorborg K, Pizzari T. The acute effect of match play on hamstring strength and lower limb flexibility in elite youth football players. Scand J Med Sci Sports. 2017;27(3):282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Carr C, McMahon JJ, Comfort P. Changes in strength, power, and speed across a season in English county cricketers. Int J Sports Physiol Perform. 2017;12(1):50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Newton RU, Gerber A, Nimphius S, Shim JK, Doan BK, Robertson M, et al. Determination of functional strength imbalance of the lower extremities. J Strength Cond Res. 2006;20(4):971–7.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Brukner P, Nealon A, Morgan C, Burgess D, Dunn A. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme. Br J Sports Med. 2014;48(11):929–38.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67–81.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bennell K, Wajswelner H, Lew P, Schall-Riaccour A, Leslie S, Plant D, Cirone J. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med. 1998;32:309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Croisier J, S G, Binet J, Genty M, Ferret J. Strength imbalances and prevention of hamstring injury in professional soccer players. Am J Sports Med. 2008;36:1469–75.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Aagaard P, Simonsen EB, Magnusson SP, Larsson B, Dyhre-Poulsen P. A new concept for isokinetic hamstring: quadriceps muscle strength ratio. Am J Sports Med. 1998;26(2):231–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Schuermans J, Van Tiggelan D, Danneels L, Witvrouw E. Susceptibility to hamstring injury in soccer: a prospective study using functional magnetic resonance imaging. Am J Sports Med. 2016;44:1276–85.CrossRefGoogle Scholar
  105. 105.
    Suguira Y, T S, Sakuraba K, Sakuma K, Suzuki E. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther. 2008;38:457–64.CrossRefGoogle Scholar
  106. 106.
    Iguchi J, Watanabe Y, Kimura M, Fujisawa Y, Hojo T, Yuasa Y, et al. Risk factors for injury among Japanese collegiate players of American Football based on performance test results. J Strength Cond Res. 2016;30:3405–11.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Timmins R, Shield A, Williams M, Lorenzen C, Opar D. Differences exist in the architectural characteristics of the biceps femoris long head in previously injured individuals. J Sci Med Sport. 2014;18:e143–4.CrossRefGoogle Scholar
  108. 108.
    Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc B Biol Sci. 2011;366(1570):1466–76.CrossRefGoogle Scholar
  110. 110.
    Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, Williams MD, Shield AJ. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2017;48(2):251–67.CrossRefGoogle Scholar
  111. 111.
    Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215(Pt 11):1944–56.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Morin JB, Gimenez P, Edouard P, Arnal P, Jimenez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Schache AG, Dorn TW, Williams GP, Brown NA, Pandy MG. Lower-limb muscular strategies for increasing running speed. J Orthop Sports Phys Ther. 2014;44(10):813–24.CrossRefGoogle Scholar
  114. 114.
    Higashihara A, Nagano Y, Ono T, Fukubayashi T. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J Sports Sci. 2018;36(12):1313–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Schache AG, Dorn TW, Blanch PD, Brown NA, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58.CrossRefGoogle Scholar
  116. 116.
    Henderson G, Barnes CA, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. J Sci Med Sport. 2010;13(4):397–402.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Engebretson AH, Myklebust G, Holme I, Engebretson L, Bahr R. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med. 2011;38:1147–53.CrossRefGoogle Scholar
  118. 118.
    Farris DJ, Lichtwark GA, Brown NA, Cresswell AG. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo. J Exp Biol. 2016;219(Pt 4):528–34.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ford KR, Myer GD, Brent JL, Hewett TE. Hip and knee extensor moments predict vertical jump height in adolescent girls. J Strength Cond Res. 2009;23(4):1327–31.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Struminger AH, Lewek MD, Goto S, Hibberd E, Blackburn JT. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises. Clin Biomech (Bristol, Avon). 2013;28(7):783–9.CrossRefGoogle Scholar
  121. 121.
    Augustsson J, Thomee R, Linden C, Folkesson M, Tranberg R, Karlsson J. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis. Scand J Med Sci Sports. 2006;16(2):111–20.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Lloyd DG, Buchanan TS, Besier TF. Neuromuscular biomechanical modeling to understand knee ligament loading. Med Sci Sports Exerc. 2005;37(11):1939–47.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    van der Harst JJ, Gokeler A, Hof AL. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg. Clin Biomech (Bristol, Avon). 2007;22(6):674–80.CrossRefGoogle Scholar
  124. 124.
    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–30.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gabbe BJ, Bennell KL, Finch CF. Why are older Australian football players at greater risk of hamstring injury? J Sci Med Sport. 2006;9:327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Gabbe BJ, Bennell KL, Finch CF, Wajswelner H, Orchard JW. Predictors of hamstring injury at the elite level of Australian football. Scand J Sci Med Sports. 2006;16:7–13.CrossRefGoogle Scholar
  128. 128.
    Rolls A, George K. The relationship between hamstring muscle injuries and hamstring muscle length in young elite footballers. Phys Ther Sport. 2004;5:179–87.CrossRefGoogle Scholar
  129. 129.
    van Doormaal MC. No relationship between hamstring flexibility and hamstring injuries in male amateur soccer players. Am J Sports Med. 2017;45:121–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. Am J Sports Med. 2003;31:41–6.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Bohannon RW, Tiberio D, Zito M. Selected measures of ankle dorsiflexion range of motion: differences and intercorrelations. Foot Ankle. 1989;10(2):99–103.CrossRefGoogle Scholar
  132. 132.
    Bezodis NE, Trewartha G, Salo AI. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation. Sports Biomech. 2015;14(2):232–45.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Chumanov ES, Heiderscheit BC, Thelen DG. Hamstring musculotendon dynamics during stance and swing phases of high speed running. Med Sci Sports Exerc. 2011;43:525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Mendiguchia J, Martinez-Ruiz E, Edouard P, Morin JB, Martinez-Martinez F, Idoate F, Mendez-Villanueva A. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 2017;49(7):1482–92.CrossRefGoogle Scholar
  135. 135.
    Whiteley R, van Dyk N, Wangensteen A, Hansen C. Clinical implications for daily physiotherapy examination of 131 acute hamstring injuries and their association with running speed and rehabilitation progression. Br J Sports Med. 2018;52:303–10.CrossRefGoogle Scholar
  136. 136.
    Wallwork SB, Bellan V, Catley MJ, Moseley GL. Neural representations and the cortical body matrix: implications for sports medicine and future directions. Br J Sports Med. 2016;50(16):990.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, et al. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc. 2005;37(1):108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Franettovich Smith MM, Bonacci J, Mendis MD, Christie C, Rotstein A, Hides JA. Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers. J Sci Med Sport. 2017;20(2):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Yamada M, Matsumoto D. The reaction time of mental rotation predicts strain in rugby players. J Phys Ther Sci. 2009;21:177–81.CrossRefGoogle Scholar
  140. 140.
    Mair SD, Seaber AV, Glisson RR, Garrett WE. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med. 1996;24(2):137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.CrossRefGoogle Scholar
  142. 142.
    Bengttson H, Ekstrand J, Hagglund M. Muscle injury rates in professional football increase with fixture congestion: an 11 year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:743–7.CrossRefGoogle Scholar
  143. 143.
    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I – post-match fatigue and time course of recovery. Sports Med. 2012;42(12):997–1015.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955–64.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Robineau J, Jouaux T, Lacroix M, Babault N. Neuromuscular fatigue induced by a 90-minute soccer game modeling. J Strength Cond Res. 2012;26(2):555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30(8):573–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J Sports Sci. 2003;21(11):933–42.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Reilly T, Drust B, Clarke N. Muscle fatigue during football match-play. Sports Med. 2008;38(5):357–67.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport. 2010;13(1):120–5.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Greco CC, da Silva WL, Camarda SR, Denadai BS. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin Physiol Funct Imaging. 2013;33(1):18–23.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Marshall PW, Lovell R, Jeppesen GK, Andersen K, Siegler JC. Hamstring muscle fatigue and central motor output during a simulated soccer match. PLoS One. 2014;9(7):e102753.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Greig M, Siegler JC. Soccer-specific fatigue and eccentric hamstrings muscle strength. J Athl Train. 2009;44(2):180–4.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, Hader K. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48(3):539–83.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Daly C, Persson UM, Twycross-Lewis R, Woledge RC, Morrissey D. The biomechanics of running in athletes with previous hamstring injury: a case-control study. Scand J Med Sci Sports. 2016;26(4):413–20.CrossRefGoogle Scholar
  155. 155.
    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Maly T, Sugimoto D, Izovska J, Zahalka F, Mala L. Effect of muscular strength, asymmetries and fatigue on kicking performance in soccer players. Int J Sports Med. 2018;39(4):297–303.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Rampinini E, Impellizzeri FM, Castagna C, Azzalin A, Ferrari Bravo D, Wisloff U. Effect of match-related fatigue on short-passing ability in young soccer players. Med Sci Sports Exerc. 2008;40(5):934–42.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36(7):1403–9.CrossRefGoogle Scholar
  159. 159.
    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. The influence of soccer playing actions on the recovery kinetics after a soccer match. J Strength Cond Res. 2014;28(6):1517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Thorlund JB, Aagaard P, Madsen K. Rapid muscle force capacity changes after soccer match play. Int J Sports Med. 2009;30(4):273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Thorpe R, Sunderland C. Muscle damage, endocrine, and immune marker response to a soccer match. J Strength Cond Res. 2012;26(10):2783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Dye SF. The knee as a biologic transmission with an envelope of function: a theory. Clin Orthop Relat Res (1976–2007). 1996;325:10–8.CrossRefGoogle Scholar
  163. 163.
    Lawrence DW, P C, Hutchison MG. Influence of extrinsic risk factors for National Football League Injury rates. Orthop J Sports Med. 2016;4:1–9.CrossRefGoogle Scholar
  164. 164.
    Orchard JW. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am J Sports Med. 2001;29:300–3.PubMedCrossRefGoogle Scholar
  165. 165.
    Thomson A, Whiteley R, Bleakley C. Higher shoe-surface interaction is associated with doubling of lower extremity injury risk in football codes: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):1245–52.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian Football match-play. J Sci Med Sport. 2015;18(2):219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Bengtsson H, Ekstrand J, Walden M, Hagglund M. Muscle injury rate in professional football is higher in matches played within 5 days since the previous match: a 14-year prospective study with more than 130 000 match observations. Br J Sports Med. 2018;52(17):1116–22.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Hagglund M, M W, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:738–42.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Carling C, A M, Le Gall F, Dupont G. The impact of short periods of match congestion on injury risk and patterns in an elite football club. Br J Sports Med. 2016;50(12):764–8.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50(8):471–5.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Carey DL, Blanch P, Ong KL, Crossley KM, Crow J, Morris ME. Training loads and injury risk in Australian football-differing acute: chronic workload ratios influence match injury risk. Br J Sports Med. 2017;51(16):1215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Carey DL, Crow J, Ong KL, Blanch P, Morris ME, Dascombe BJ, Crossley KM. Optimizing preseason training loads in australian football. Int J Sports Physiol Perform. 2018;13(2):194–9.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Murray NB, Gabbett TJ, Townshend AD, Blanch P. Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br J Sports Med. 2017;51(9):749–54.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Williams S, West S, Cross MJ, Stokes KA. Better way to determine the acute:chronic workload ratio? Br J Sports Med. 2017;51(3):209–10.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014;48(8):708–12.CrossRefGoogle Scholar
  176. 176.
    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute: chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50:231–6.CrossRefGoogle Scholar
  177. 177.
    Carey DL, Crossley KM, Whiteley R, Mosler A, Ong KL, Crow J, Morris ME. Modeling training loads and injuries: the dangers of discretization. Med Sci Sports Exerc. 2018;50(11):2267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Hulin BT. The never-ending search for the perfect acute:chronic workload ratio: what role injury definition? Br J Sports Med. 2017;51(13):991–2.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Bowen L, Gross AS, Gimpel M, Li FX. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51(5):452–9.CrossRefGoogle Scholar
  180. 180.
    Delecroix B, McCall A, Dawson B, Berthoin S, Dupont G. Workload and non-contact injury incidence in elite football players competing in European leagues. Eur J Sport Sci. 2018;18(9):1280–7.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Jaspers A, Kuyvenhoven JP, Staes F, Frencken WGP, Helsen WF, Brink MS. Examination of the external and internal load indicators’ association with overuse injuries in professional soccer players. J Sci Med Sport. 2018;21(6):579–85.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Malone S, Owen A, Newton M, Mendes B, Collins KD, Gabbett TJ. The acute:chonic workload ratio in relation to injury risk in professional soccer. J Sci Med Sport. 2017;20(6):561–5.CrossRefGoogle Scholar
  183. 183.
    McCall A, Dupont G, Ekstrand J. Internal workload and non-contact injury: a one-season study of five teams from the UEFA Elite Club Injury Study. Br J Sports Med. 2018;52(23):1517–22.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):1164–8.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Juhari F, Ritchie D, O’Connor F, Pitchford N, Weston M, Thornton HR, Bartlett JD. The quantification of within-week session intensity, duration, and intensity distribution across a season in Australian Football using the session rating of perceived exertion method. Int J Sports Physiol Perform. 2018;13(7):940–6.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Bowling A. Just one question: if one question works, why ask several? J Epidemiol Community Health. 2005;59(5):342–5.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Ekstrand J, Lundqvist D, Davison M, D’Hooghe M, Pensgaard AM. Communication quality between the medical team and the head coach/manager is associated with injury burden and player availability in elite football clubs. Br J Sports Med. 2019;53(5):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Ekstrand J, Lundqvist D, Lagerback L, Vouillamoz M, Papadimitiou N, Karlsson J. Is there a correlation between coaches’ leadership styles and injuries in elite football teams? A study of 36 elite teams in 17 countries. Br J Sports Med. 2018;52(8):527–31.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Schut L, Wangensteen A, Maaskant J, Tol JL, Bahr R, Moen M. Can clinical evaluation predict return to sport after acute hamstring injuries? A systematic review. Sports Med. 2016;47(6):1123–44.CrossRefGoogle Scholar
  190. 190.
    Delvaux F, Rochcongar P, Bruyere O, Bourlet G, Daniel C, Diverse P, et al. Return-to-play criteria after hamstring injury: actual medicine practice in professional soccer teams. J Sports Sci Med. 2014;13(3):721–3.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Warren P, B G, Schneider-Klosky M, Bennell K. Clinical predictors of time to return to competition and of recurrence following hasmtring strain in elite Australian footballers. Br J Sports Med. 2010;44:415–9.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hodges PW, Tucker K. Moving differently in pain: a new theory to explain the adaptation to pain. Pain. 2011;152(3 Suppl):S90–8.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Lund JP, Donga R, Widmer CG, Stohler CS. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol. 1991;69(5):683–94.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am J Sports Med. 2013;41(1):116–25.CrossRefGoogle Scholar
  196. 196.
    Croisier JL, Crielaard JM. Hamstring muscle tear with recurrent complaints: an isokinetic profile. Isokinetics Exerc Sci. 2000;8(3):175–80.CrossRefGoogle Scholar
  197. 197.
    Lee MJ, Reid SL, Elliott BC, Lloyd DG. Running biomechanics and lower limb strength associated with prior hamstring injury. Med Sci Sports Exerc. 2009;41(10):1942–51.CrossRefGoogle Scholar
  198. 198.
    Sanfilippo JL, Silder A, Sherry MA, Tuite MJ, Heiderscheit BC. Hamstring strength and morphology progression after return to sport from injury. Med Sci Sports Exerc. 2013;45(3):448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37(12):1101–9.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.CrossRefGoogle Scholar
  202. 202.
    Hickey J, Timmins R, Maniar N, Rio E, Naughton G, Williams M, Opar D. Pain-free vs pain-threshold rehabilitation for acute hamstring strain injury: a randomised controlled trial. J Sci Med Sport. 2017;20:11–2.CrossRefGoogle Scholar
  203. 203.
    Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med. 2015;34(2):263–84.CrossRefGoogle Scholar
  204. 204.
    Ekstrand J, Askling C, Magnusson H, Mithoefer K. Return to play after thigh muscle injury in elite football players: implementation and validation of the Munich muscle injury classification. Br J Sports Med. 2013;47(12):769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Silder A, Reeder SB, Thelen DG. The influence of prior hamstring injury on lengthening muscle tissue mechanics. J Biomech. 2010;43(12):2254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Best TM, Hunter KD. Muscle injury and repair. Phys Med Rehabil Clin N Am. 2000;11(2):251–66.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47(13):3325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45(4):647–52.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    van Heumen M, Tol JL, de Vos RJ, Moen MH, Weir A, Orchard J, Reurink G. The prognostic value of MRI in determining reinjury risk following acute hamstring injury: a systematic review. Br J Sports Med. 2017;51(18):1355–63.CrossRefGoogle Scholar
  211. 211.
    Reurink G, Almusa E, Goudswaard GJ, Tol JL, Hamilton B, Moen MH, et al. No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med. 2015;43(5):1228–34.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Chu SK, Rho ME. Hamstring injuries in the athlete: diagnosis, treatment, and return to play. Curr Sports Med Rep. 2016;15(3):184–90.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Arnoczky SP, Lavagnino M, Egerbacher M. The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol. 2007;88(4):217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Rees JD, Stride M, Scott A. Tendons--time to revisit inflammation. Br J Sports Med. 2014;48(21):1553–7.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Cook JL, Feller JA, Bonar SF, Khan KM. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J Orthop Res. 2004;22(2):334–8.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Cardoso TB, Pizzari T, Kinsella R, Hope D, Cook J. Current trends in tendinopathy management. Best Pract Res Clin Rheumatol. 2019;33(1):122–40.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Cook JL, Rio E, Purdam CR, Docking SI. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med. 2016;50(19):1187–91.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Almekinders LC, Banes AJ, Ballenger CA. Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc. 1993;25(5):603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Goom TS, Malliaras P, Reiman MP, Purdam CR. Proximal hamstring tendinopathy: clinical aspects of assessment and management. J Orthop Sports Phys Ther. 2016;46(6):483–93.CrossRefGoogle Scholar
  220. 220.
    Lempainen L, Sarimo J, Mattila K, Vaittinen S, Orava S. Proximal hamstring tendinopathy: results of surgical management and histopathologic findings. Am J Sports Med. 2009;37(4):727–34.CrossRefGoogle Scholar
  221. 221.
    Pietrzak JR, Kayani B, Tahmassebi J, Haddad FS. Proximal hamstring tendinopathy: pathophysiology, diagnosis and treatment. Br J Hosp Med. 2018;79(7):389–94.CrossRefGoogle Scholar
  222. 222.
    Beatty NR, Felix I, Hettler J, Moley PJ, Wyss JF. Rehabilitation and prevention of proximal hamstring tendinopathy. Curr Sports Med Rep. 2017;16(3):162–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.La Trobe Sport and Exercise Medicine Research CentreLa Trobe UniversityMelbourneAustralia
  2. 2.Aspetar, Qatar Orthopaedic and Sports Medicine HospitalDohaQatar

Personalised recommendations