Optimising Hamstring Strength and Function for Performance After Hamstring Injury

  • Anthony ShieldEmail author
  • Matthew Bourne


Hamstring strain injury often results in neuromuscular performance deficits that persist beyond rehabilitation and the return to full training and competitive sport. It seems appropriate to address these deficits as a part of a sport-specific training program which primarily aims to enhance performance. Prolonged deficits in horizontal ground reaction forces in sprinting, repeat sprint performance, knee flexor eccentric strength and biceps femoris long head fascicle lengths have been observed in multiple studies of hamstring strain injury. Why such deficits persist beyond the return to sport is not known, although persistent neuromuscular inhibition of the injured muscles has been proposed. There is limited and mixed evidence for sprint running kinematic (technique) differences between previously injured and uninjured limbs or athletes, although more work in this area seems warranted. While there is some uncertainty about the optimal mix of methods for addressing the aforementioned deficits, sport-specific running programs in conjunction with continued monitoring of acceleration phase sprint performance and repeated sprint ability seem appropriate. Heavy strength training with at least some eccentrically biased exercises is also recommended to address deficits in eccentric strength and muscle fascicle lengths.


  1. 1.
    Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50(8):471–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med. 2017;51(5):428–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Stares J, Dawson B, Peeling P, Drew M, Heasman J, Rogalski B, et al. How much is enough in rehabilitation? High running workloads following lower limb muscle injury delay return to play but protect against subsequent injury. J Sci Med Sport. 2018;21(10):1019–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload-injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019;22(1):29–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Malone S, Owen A, Mendes B, Hughes B, Collins K, Gabbett TJ. High-speed running and sprinting as an injury risk factor in soccer: can well-developed physical qualities reduce the risk? J Sci Med Sport. 2018;21(3):257–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Maniar N, Shield AJ, Williams MD, Timmins RG, Opar DA. Hamstring strength and flexibility after hamstring strain injury: a systematic review and meta-analysis. Br J Sports Med. 2016;50(15):909–20.CrossRefGoogle Scholar
  7. 7.
    Brughelli M, Cronin J, Mendiguchia J, Kinsella D, Nosaka K. Contralateral leg deficits in kinetic and kinematic variables during running in Australian rules football players with previous hamstring injuries. J Strength Cond Res. 2010;24(9):2539–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Lord C, Blazevich AJ, Drinkwater EJ, Ma’ayah F. Greater loss of horizontal force after a repeated-sprint test in footballers with a previous hamstring injury. J Sci Med Sport. 2019;22(1):16–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30(2):199–203.CrossRefGoogle Scholar
  10. 10.
    Lee M, Reid S, Elliott B, Lloyd D. Running biomechanics and lower limb strength associated with prior hamstring injury. Med Sci Sports Exerc. 2009;41(10):1942–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am J Sports Med. 2013;41(1):116–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Silder A, Heiderscheit B, Thelen D, Enright T, Tuite M. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skelet Radiol. 2008;37:1101–9.CrossRefGoogle Scholar
  14. 14.
    Timmins RG, Bourne MN, Hickey JT, Maniar N, Tofari PJ, Williams MD, et al. Effect of prior injury on changes to biceps femoris architecture across an Australian Football League season. Med Sci Sports Exerc. 2017;49(10):2102–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long-head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13.Google Scholar
  16. 16.
    Kääriäinen M, Järvinen T, Järvinen M, Rantanen J, Kalimo H. Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports. 2000;10(6):332–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Silder A, Reeder SB, Thelen DG. The influence of prior hamstring injury on lengthening muscle tissue mechanics. J Biomech. 2010;43(12):2254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Croisier JL. Factors associated with recurrent hamstring injuries. Sports Med. 2004;34(10):681–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47(6):351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):329–36.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857–65.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzon C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bourne MN, Opar DA, Williams MD, Al Najjar A, Shield AJ. Muscle activation patterns in the Nordic Hamstring exercise: impact of prior strain injury. Scand J Med Sci Sports. 2016;26(6):666–74.CrossRefGoogle Scholar
  26. 26.
    Buhmann RL. Assessment of hamstring muscle voluntary activation: impact of contraction mode and previous injury. Br J Sports Med. 2014.Google Scholar
  27. 27.
    Daly C, McCarthy Persson U, Twycross-Lewis R, Woledge RC, Morrissey D. The biomechanics of running in athletes with previous hamstring injury: a case-control study. Scand J Med Sci Sports. 2016;26(4):413–20.CrossRefGoogle Scholar
  28. 28.
    Graven-Nielsen T, Arendt-Nielsen L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat Rev Rheumatol. 2010;6(10):599–606.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mense S. The pathogenesis of muscle pain. Curr Pain Headache Rep. 2003;7(6):419–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Blandford L, Theis N, Charvet I, Mahaffey R. Is neuromuscular inhibition detectable in elite footballers during the Nordic Hamstring exercise? Clin Biomech (Bristol, Avon). 2018;58:39–43.CrossRefGoogle Scholar
  31. 31.
    Charlton PC, Raysmith B, Wollin M, Rice S, Purdam C, Clark RA, et al. Knee flexion not hip extension strength is persistently reduced following hamstring strain injury in Australian Football athletes: implications for periodic health examinations. J Sci Med Sport. 2018;21(10):999–1003.PubMedCrossRefGoogle Scholar
  32. 32.
    Sims C. Impact of prior hamstring strain injury, fatigue & biofeedback on eccentric & isometric knee flexor strength. Unpublished Masters Thesis, Queensland University of Technology.Google Scholar
  33. 33.
    Lord C, Ma’ayah F, Blazevich AJ. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players. Scand J Med Sci Sports. 2018;28(3):1235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc. 2015;47(3):528–36.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Timmins RG, Opar DA, Williams MD, Schache AG, Dear NM, Shield AJ. Reduced biceps femoris myoelectrical activity influences eccentric knee flexor weakness after repeat sprint running. Scand J Med Sci Sports. 2014;24(4):e299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Duhig S, Shield AJ, Opar D, Gabbett TJ, Ferguson C, Williams M. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50(24):1536–40.CrossRefGoogle Scholar
  37. 37.
    Ruddy JD, Pollard CW, Timmins RG, Williams MD, Shield AJ, Opar DA. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med. 2018;52(14):919–28.CrossRefGoogle Scholar
  38. 38.
    Morin JB, Gimenez P, Edouard P, Arnal P, Jimenez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mendiguchia J, Samozino P, Martinez-Ruiz E, Brughelli M, Schmikli S, Morin JB, et al. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med. 2014;35(8):690–5.CrossRefGoogle Scholar
  40. 40.
    Mendiguchia J, Edouard P, Samozino P, Brughelli M, Cross M, Ross A, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535–41.CrossRefGoogle Scholar
  41. 41.
    Romero-Franco N, Jimenez-Reyes P, Castano-Zambudio A, Capelo-Ramirez F, Rodriguez-Juan JJ, Gonzalez-Hernandez J, et al. Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci. 2017;17(4):386–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–58.CrossRefGoogle Scholar
  43. 43.
    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martinez-Rodriguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):2143–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Morin JB, Petrakos G, Jimenez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Roksund OD, Kristoffersen M, Bogen BE, Wisnes A, Engeseth MS, Nilsen AK, et al. Higher drop in speed during a repeated sprint test in soccer players reporting former hamstring strain injury. Front Physiol. 2017;8:25.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability – Part II: Recommendations for training. Sports Med. 2011;41(9):741–56.PubMedCrossRefGoogle Scholar
  47. 47.
    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability – Part I: Factors contributing to fatigue. Sports Med. 2011;41(8):673–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Mendez-Villanueva A, Hamer P, Bishop D. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc. 2007;39(12):2219–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med. 2001;31(15):1063–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Bishop D, Edge J, Thomas C, Mercier J. Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1991–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006;96(1):97–105.PubMedCrossRefGoogle Scholar
  54. 54.
    Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport. 2010;13(1):120–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36(7):1403–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Small K, McNaughton L, Greig M, Lovell R. Effect of timing of eccentric hamstring strengthening exercises during soccer training: implications for muscle fatigability. J Strength Cond Res. 2009;23(4):1077–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34(8):1297–306.PubMedCrossRefGoogle Scholar
  58. 58.
    Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A. The Football Association Medical Research programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Matthews MJ, Heron K, Todd S, Tomlinson A, Jones P, Delextrat A, et al. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue. Phys Ther Sport. 2017;25:39–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Delextrat A, Piquet J, Matthews MJ, Cohen DD. Strength-endurance training reduces the hamstrings strength decline following simulated football competition in female players. Front Physiol. 2018;9:1059.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–7.CrossRefGoogle Scholar
  62. 62.
    Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Verrall GM, Slavotinek JP, Barnes PG. The effect of sports specific training on reducing the incidence of hamstring injuries in professional Australian Rules football players. Br J Sports Med. 2005;39(6):363–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Oakley AJ, Jennings J, Bishop CJ. Holistic hamstring health: not just the Nordic Hamstring exercise. Br J Sports Med. 2018;52(13):816–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Bourne MN, Williams MD, Pizzari T, Shield AJ. A functional MRI exploration of hamstring activation during the supine bridge exercise. Int J Sports Med. 2018;39(2):104–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Bourne MN, Williams MD, Opar DA, Al Najjar A, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.CrossRefGoogle Scholar
  67. 67.
    Bourne MN, Timmins RG, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of the Nordic Hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mendiguchia J, Arcos AL, Garrues MA, Myer G, Yanci J, Idoate F. The use of MRI to evaluate posterior thigh muscle activity and damage during Nordic Hamstring exercise. J Strength Cond Res. 2013;27(12):3426–35.PubMedCrossRefGoogle Scholar
  69. 69.
    Ono T, Okuwaki T, Fukubayashi T. Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med. 2010;18(3):188–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19(1):42–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):1207–15.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Malliaropoulos N, Mendiguchia J, Pehlivanidis H, Papadopoulou S, Valle X, Malliaras P, et al. Hamstring exercises for track and field athletes: injury and exercise biomechanics, and possible implications for exercise selection and primary prevention. Br J Sports Med. 2012;46(12):846–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med. 2015;34(2):263–84.CrossRefGoogle Scholar
  75. 75.
    Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy RD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251–67.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wakahara T, Miyamoto N, Sugisaki N, Murata K, Kanehisa H, Kawakami Y, et al. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur J Appl Physiol. 2012;112(4):1569–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):2158–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004;96(4):1486–95.PubMedCrossRefGoogle Scholar
  79. 79.
    Arendt-Nielsen L, Zwarts M. Measurement of muscle fiber conduction velocity in humans: techniques and applications. J Clin Neurophysiol. 1989;6(2):173–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Yao W, Fuglevand RJ, Enoka RM. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol. 2000;83(1):441–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Investig Radiol. 1990;25(5):480–5.CrossRefGoogle Scholar
  82. 82.
    Fleckenstein JL, Canby RC, Parkey RW, Peshock RM. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. AJR Am J Roentgenol. 1988;151(2):231–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Adams GR, Duvoisin MR, Dudley GA. Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol (1985). 1992;73(4):1578–83.CrossRefGoogle Scholar
  84. 84.
    Cagnie B, Elliott JM, O’Leary S, D’Hooge R, Dickx N, Danneels LA. Muscle functional MRI as an imaging tool to evaluate muscle activity. J Orthop Sports Phys Ther. 2011;41(11):896–903.PubMedCrossRefGoogle Scholar
  85. 85.
    Patten C, Meyer RA, Fleckenstein JL. T2 mapping of muscle. Semin Musculoskelet Radiol. 2003;7(4):297–305.PubMedCrossRefGoogle Scholar
  86. 86.
    Fernandez-Gonzalo R, Tesch PA, Linnehan RM, Kreider RB, Di Salvo V, Suarez-Arrones L, et al. Individual muscle use in hamstring exercises by soccer players assessed using functional MRI. Int J Sports Med. 2016;37(7):559–64.PubMedCrossRefGoogle Scholar
  87. 87.
    Hegyi A, Peter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic Hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28(3):992–1000.PubMedCrossRefGoogle Scholar
  88. 88.
    Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskaer TC, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8.CrossRefGoogle Scholar
  89. 89.
    Messer DJ, Bourne MN, Williams MD, Al Najjar A, Shield AJ. Hamstring muscle use in women during hip extension and the Nordic Hamstring exercise: a functional magnetic resonance imaging study. J Orthop Sports Phys Ther. 2018;48(8):607–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Mendiguchia J, Garrues MA, Cronin JB, Contreras B, Arcos AL, Malliaropoulos N, et al. Non-uniform changes in MRI measurements of the thigh muscles following two hamstring strengthening exercises. J Strength Cond Res. 2012;27(3):574–81.Google Scholar
  91. 91.
    Tsaklis P, Malliaropoulos N, Mendiguchia J, Korakakis V, Tsapralis K, Pyne D, et al. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation. Open Access J Sports Med. 2015;6:209–17.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Oliver GD, Dougherty CP. Comparison of hamstring and gluteus muscles electromyographic activity while performing the razor curl vs. the traditional prone hamstring curl. J Strength Cond Res. 2009;23(8):2250–5.PubMedCrossRefGoogle Scholar
  93. 93.
    van den Tillaar R, Solheim JAB, Bencke J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int J Sports Phys Ther. 2017;12(5):718–27.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hegyi A, Csala D, Peter A, Finni T, Cronin NJ. High-density electromyography activity in various hamstring exercises. Scand J Med Sci Sports. 2019;29(1):34–43.PubMedCrossRefGoogle Scholar
  95. 95.
    McAllister MJ, Hammond KG, Schilling BK, Ferreria LC, Reed JP, Weiss LW. Muscle activation during various hamstring exercises. J Strength Cond Res. 2014;28(6):1573–80.PubMedCrossRefGoogle Scholar
  96. 96.
    Del Monte MJ, Opar DA, Timmins RG, Ross J, Keogh JW, Lorenzen C. Hamstring myoelectrical activity during three different kettlebell swing exercises. J Strength Cond Res. 2017.Google Scholar
  97. 97.
    Contreras B, Vigotsky AD, Schoenfeld BJ, Beardsley C, Cronin J. A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyographic activity in the back squat and barbell hip thrust exercises. J Appl Biomech. 2015;31(6):452–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Andersen V, Fimland MS, Mo DA, Iversen VM, Vederhus T, Rockland Hellebo LR, et al. Electromyographic comparison of barbell deadlift, hex bar deadlift, and hip thrust exercises: a cross-over study. J Strength Cond Res. 2018;32(3):587–93.PubMedCrossRefGoogle Scholar
  99. 99.
    Jönhagen S, Halvorsen K, Benoit DL. Muscle activation and length changes during two lunge exercises: implications for rehabilitation. Scand J Med Sci Sports. 2009;19(4):561–8.PubMedCrossRefGoogle Scholar
  100. 100.
    da Silva JJ, Schoenfeld BJ, Marchetti PN, Pecoraro SL, Greve JMD, Marchetti PH. Muscle activation differs between partial and full back squat exercise with external load equated. J Strength Cond Res. 2017;31(6):1688–93.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556–69.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ploutz-Snyder LL, Convertino VA, Dudley GA. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. Am J Phys. 1995;269(3 Pt 2):R536–43.Google Scholar
  103. 103.
    Illera-Dominguez V, Nuell S, Carmona G, Padulles JM, Padulles X, Lloret M, et al. Early functional and morphological muscle adaptations during short-term inertial-squat training. Front Physiol. 2018;9:1265.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Enocson AG, Berg HE, Vargas R, Jenner G, Tesch PA. Signal intensity of MR-images of thigh muscles following acute open- and closed chain kinetic knee extensor exercise – index of muscle use. Eur J Appl Physiol. 2005;94(4):357–63.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Norrbrand L, Tous-Fajardo J, Vargas R, Tesch PA. Quadriceps muscle use in the flywheel and barbell squat. Aviat Space Environ Med. 2011;82(1):13–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.CrossRefGoogle Scholar
  107. 107.
    Comfort P, Stewart A, Bloom L, Clarkson B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J Strength Cond Res. 2014;28(1):173–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349–57.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Wilson GJ, Murphy AJ, Walshe A. The specificity of strength training: the effect of posture. Eur J Appl Physiol Occup Physiol. 1996;73(3–4):346–52.PubMedCrossRefGoogle Scholar
  111. 111.
    Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic Hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254–62.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic Hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic Hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Duhig SJ, Bourne MN, Buhmann RL, Williams MD, Minett GM, Roberts LA, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport. 2019;22(7):769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjaer M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci Sports. 2016;27(12):1547–59.CrossRefGoogle Scholar
  119. 119.
    Goode AP, Reiman MP, Harris L, DeLisa L, Kauffman A, Beltramo D, et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):349–56.PubMedCrossRefGoogle Scholar
  120. 120.
    Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.CrossRefGoogle Scholar
  121. 121.
    van der Horst N, Smits DW, Petersen J, Goedhart EA, Backx FJ. The preventive effect of the Nordic Hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRefGoogle Scholar
  122. 122.
    Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. Br J Sports Med. 2015;49(22):1466–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–50.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006;40(1):40–4.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Biceps femoris and semitendinosus-teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med. 2014;48(22):1599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mendiguchia J, Martinez-Ruiz E, Edouard P, Morin JB, Martinez-Martinez F, Idoate F, et al. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 2017;49(7):1482–92.CrossRefGoogle Scholar
  128. 128.
    Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532–9.CrossRefGoogle Scholar
  129. 129.
    Sanfilippo JL, Silder A, Sherry MA, Tuite MJ, Heiderscheit BC. Hamstring strength and morphology progression after return to sport from injury. Med Sci Sports Exerc. 2013;45(3):448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tyler TF, Schmitt BM, Nicholas SJ, McHugh M. Rehabilitation after hamstring strain injury emphasizing eccentric strengthening at long muscle lengths: results of long term follow-up. J Sport Rehabil. 2016;26:131–40.PubMedCrossRefGoogle Scholar
  131. 131.
    Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part I: A critical review of the literature. J Sports Sci. 2017;35(23):2313–21.CrossRefGoogle Scholar
  133. 133.
    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise. J Sports Sci. 2017;35(23):2322–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Exercise and Nutrition Sciences and Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.School of Allied Health Sciences, Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia

Personalised recommendations